mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-15 02:41:59 +00:00
560 lines
27 KiB
C++
560 lines
27 KiB
C++
#pragma once
|
|
|
|
#include <Core/ColumnNumbers.h>
|
|
#include <Core/ColumnsWithTypeAndName.h>
|
|
#include <Core/Field.h>
|
|
#include <Core/ValuesWithType.h>
|
|
#include <Core/Names.h>
|
|
#include <Core/IResolvedFunction.h>
|
|
#include <Common/Exception.h>
|
|
#include <DataTypes/IDataType.h>
|
|
|
|
#include "config.h"
|
|
|
|
#include <memory>
|
|
|
|
#if USE_EMBEDDED_COMPILER
|
|
# include <Core/ValuesWithType.h>
|
|
#endif
|
|
|
|
/// This file contains user interface for functions.
|
|
|
|
namespace llvm
|
|
{
|
|
class LLVMContext;
|
|
class Value;
|
|
class IRBuilderBase;
|
|
}
|
|
|
|
|
|
namespace DB
|
|
{
|
|
|
|
namespace ErrorCodes
|
|
{
|
|
extern const int NOT_IMPLEMENTED;
|
|
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
|
|
}
|
|
|
|
/// A left-closed and right-open interval representing the preimage of a function.
|
|
using FieldInterval = std::pair<Field, Field>;
|
|
using OptionalFieldInterval = std::optional<FieldInterval>;
|
|
|
|
/// The simplest executable object.
|
|
/// Motivation:
|
|
/// * Prepare something heavy once before main execution loop instead of doing it for each columns.
|
|
/// * Provide const interface for IFunctionBase (later).
|
|
/// * Create one executable function per thread to use caches without synchronization (later).
|
|
class IExecutableFunction
|
|
{
|
|
public:
|
|
|
|
virtual ~IExecutableFunction() = default;
|
|
|
|
/// Get the main function name.
|
|
virtual String getName() const = 0;
|
|
|
|
ColumnPtr execute(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count, bool dry_run) const;
|
|
|
|
protected:
|
|
|
|
virtual ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const = 0;
|
|
|
|
virtual ColumnPtr executeDryRunImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const
|
|
{
|
|
return executeImpl(arguments, result_type, input_rows_count);
|
|
}
|
|
|
|
/** Default implementation in presence of Nullable arguments or NULL constants as arguments is the following:
|
|
* if some of arguments are NULL constants then return NULL constant,
|
|
* if some of arguments are Nullable, then execute function as usual for columns,
|
|
* where Nullable columns are substituted with nested columns (they have arbitrary values in rows corresponding to NULL value)
|
|
* and wrap result in Nullable column where NULLs are in all rows where any of arguments are NULL.
|
|
*/
|
|
virtual bool useDefaultImplementationForNulls() const { return true; }
|
|
|
|
/** Default implementation in presence of arguments with type Nothing is the following:
|
|
* If some of arguments have type Nothing then default implementation is to return constant column with type Nothing
|
|
*/
|
|
virtual bool useDefaultImplementationForNothing() const { return true; }
|
|
|
|
/** If the function have non-zero number of arguments,
|
|
* and if all arguments are constant, that we could automatically provide default implementation:
|
|
* arguments are converted to ordinary columns with single value, then function is executed as usual,
|
|
* and then the result is converted to constant column.
|
|
*/
|
|
virtual bool useDefaultImplementationForConstants() const { return false; }
|
|
|
|
/** If function arguments has single low cardinality column and all other arguments are constants, call function on nested column.
|
|
* Otherwise, convert all low cardinality columns to ordinary columns.
|
|
* Returns ColumnLowCardinality if at least one argument is ColumnLowCardinality.
|
|
*/
|
|
virtual bool useDefaultImplementationForLowCardinalityColumns() const { return true; }
|
|
|
|
/** If function arguments has single sparse column and all other arguments are constants, call function on nested column.
|
|
* Otherwise, convert all sparse columns to ordinary columns.
|
|
* If default value doesn't change after function execution, returns sparse column as a result.
|
|
* Otherwise, result column is converted to full.
|
|
*/
|
|
virtual bool useDefaultImplementationForSparseColumns() const { return true; }
|
|
|
|
/** Some arguments could remain constant during this implementation.
|
|
*/
|
|
virtual ColumnNumbers getArgumentsThatAreAlwaysConstant() const { return {}; }
|
|
|
|
/** True if function can be called on default arguments (include Nullable's) and won't throw.
|
|
* Counterexample: modulo(0, 0)
|
|
*/
|
|
virtual bool canBeExecutedOnDefaultArguments() const { return true; }
|
|
|
|
private:
|
|
|
|
ColumnPtr defaultImplementationForConstantArguments(
|
|
const ColumnsWithTypeAndName & args, const DataTypePtr & result_type, size_t input_rows_count, bool dry_run) const;
|
|
|
|
ColumnPtr defaultImplementationForNulls(
|
|
const ColumnsWithTypeAndName & args, const DataTypePtr & result_type, size_t input_rows_count, bool dry_run) const;
|
|
|
|
ColumnPtr defaultImplementationForNothing(
|
|
const ColumnsWithTypeAndName & args, const DataTypePtr & result_type, size_t input_rows_count) const;
|
|
|
|
ColumnPtr executeWithoutLowCardinalityColumns(
|
|
const ColumnsWithTypeAndName & args, const DataTypePtr & result_type, size_t input_rows_count, bool dry_run) const;
|
|
|
|
ColumnPtr executeWithoutSparseColumns(
|
|
const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count, bool dry_run) const;
|
|
};
|
|
|
|
using ExecutableFunctionPtr = std::shared_ptr<IExecutableFunction>;
|
|
|
|
/** Function with known arguments and return type (when the specific overload was chosen).
|
|
* It is also the point where all function-specific properties are known.
|
|
*/
|
|
class IFunctionBase : public IResolvedFunction
|
|
{
|
|
public:
|
|
|
|
~IFunctionBase() override = default;
|
|
|
|
virtual ColumnPtr execute( /// NOLINT
|
|
const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count, bool dry_run = false) const
|
|
{
|
|
return prepare(arguments)->execute(arguments, result_type, input_rows_count, dry_run);
|
|
}
|
|
|
|
/// Get the main function name.
|
|
virtual String getName() const = 0;
|
|
|
|
const Array & getParameters() const final
|
|
{
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "IFunctionBase doesn't support getParameters method");
|
|
}
|
|
|
|
/// Do preparations and return executable.
|
|
/// sample_columns should contain data types of arguments and values of constants, if relevant.
|
|
virtual ExecutableFunctionPtr prepare(const ColumnsWithTypeAndName & arguments) const = 0;
|
|
|
|
#if USE_EMBEDDED_COMPILER
|
|
|
|
virtual bool isCompilable() const { return false; }
|
|
|
|
/** Produce LLVM IR code that operates on scalar values. See `toNativeType` in DataTypes/Native.h
|
|
* for supported value types and how they map to LLVM types.
|
|
*
|
|
* NOTE: the builder is actually guaranteed to be exactly `llvm::IRBuilder<>`, so you may safely
|
|
* downcast it to that type. This method is specified with `IRBuilderBase` because forward-declaring
|
|
* templates with default arguments is impossible and including LLVM in such a generic header
|
|
* as this one is a major pain.
|
|
*/
|
|
virtual llvm::Value * compile(llvm::IRBuilderBase & /*builder*/, const ValuesWithType & /*arguments*/) const
|
|
{
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "{} is not JIT-compilable", getName());
|
|
}
|
|
|
|
#endif
|
|
|
|
virtual bool isStateful() const { return false; }
|
|
|
|
/** Should we evaluate this function while constant folding, if arguments are constants?
|
|
* Usually this is true. Notable counterexample is function 'sleep'.
|
|
* If we will call it during query analysis, we will sleep extra amount of time.
|
|
*/
|
|
virtual bool isSuitableForConstantFolding() const { return true; }
|
|
|
|
/** If function isSuitableForConstantFolding then, this method will be called during query analysis
|
|
* if some arguments are constants. For example logical functions (AndFunction, OrFunction) can
|
|
* return they result based on some constant arguments.
|
|
* Arguments are passed without modifications, useDefaultImplementationForNulls, useDefaultImplementationForNothing,
|
|
* useDefaultImplementationForConstants, useDefaultImplementationForLowCardinality are not applied.
|
|
*/
|
|
virtual ColumnPtr getConstantResultForNonConstArguments(
|
|
const ColumnsWithTypeAndName & /* arguments */, const DataTypePtr & /* result_type */) const { return nullptr; }
|
|
|
|
/** Function is called "injective" if it returns different result for different values of arguments.
|
|
* Example: hex, negate, tuple...
|
|
*
|
|
* Function could be injective with some arguments fixed to some constant values.
|
|
* Examples:
|
|
* plus(const, x);
|
|
* multiply(const, x) where x is an integer and constant is not divisible by two;
|
|
* concat(x, 'const');
|
|
* concat(x, 'const', y) where const contain at least one non-numeric character;
|
|
* concat with FixedString
|
|
* dictGet... functions takes name of dictionary as its argument,
|
|
* and some dictionaries could be explicitly defined as injective.
|
|
*
|
|
* It could be used, for example, to remove useless function applications from GROUP BY.
|
|
*
|
|
* Sometimes, function is not really injective, but considered as injective, for purpose of query optimization.
|
|
* For example, toString function is not injective for Float64 data type,
|
|
* as it returns 'nan' for many different representation of NaNs.
|
|
* But we assume, that it is injective. This could be documented as implementation-specific behaviour.
|
|
*
|
|
* sample_columns should contain data types of arguments and values of constants, if relevant.
|
|
* NOTE: to check is function injective with any arguments, you can pass
|
|
* empty columns as sample_columns (since most of the time function will
|
|
* ignore it anyway, and creating arguments just for checking is
|
|
* function injective or not is overkill).
|
|
*/
|
|
virtual bool isInjective(const ColumnsWithTypeAndName & /*sample_columns*/) const { return false; }
|
|
|
|
/** Function is called "deterministic", if it returns same result for same values of arguments.
|
|
* Most of functions are deterministic. Notable counterexample is rand().
|
|
* Sometimes, functions are "deterministic" in scope of single query
|
|
* (even for distributed query), but not deterministic it general.
|
|
* Example: now(). Another example: functions that work with periodically updated dictionaries.
|
|
*/
|
|
|
|
virtual bool isDeterministic() const { return true; }
|
|
|
|
virtual bool isDeterministicInScopeOfQuery() const { return true; }
|
|
|
|
/** Lets you know if the function is monotonic in a range of values.
|
|
* This is used to work with the index in a sorted chunk of data.
|
|
* And allows to use the index not only when it is written, for example `date >= const`, but also, for example, `toMonth(date) >= 11`.
|
|
* All this is considered only for functions of one argument.
|
|
*/
|
|
virtual bool hasInformationAboutMonotonicity() const { return false; }
|
|
|
|
/** Lets you know if the function has its definition of preimage.
|
|
* This is used to work with predicate optimizations, where the comparison between
|
|
* f(x) and a constant c could be converted to the comparison between x and f's preimage [b, e).
|
|
*/
|
|
virtual bool hasInformationAboutPreimage() const { return false; }
|
|
|
|
struct ShortCircuitSettings
|
|
{
|
|
/// Should we enable lazy execution for the first argument of short-circuit function?
|
|
/// Example: if(cond, then, else), we don't need to execute cond lazily.
|
|
bool enable_lazy_execution_for_first_argument;
|
|
/// Should we enable lazy execution for functions, that are common descendants of
|
|
/// different short-circuit function arguments?
|
|
/// Example 1: if (cond, expr1(..., expr, ...), expr2(..., expr, ...)), we don't need
|
|
/// to execute expr lazily, because it's used in both branches.
|
|
/// Example 2: and(expr1, expr2(..., expr, ...), expr3(..., expr, ...)), here we
|
|
/// should enable lazy execution for expr, because it must be filtered by expr1.
|
|
bool enable_lazy_execution_for_common_descendants_of_arguments;
|
|
/// Should we enable lazy execution without checking isSuitableForShortCircuitArgumentsExecution?
|
|
/// Example: toTypeName(expr), even if expr contains functions that are not suitable for
|
|
/// lazy execution (because of their simplicity), we shouldn't execute them at all.
|
|
bool force_enable_lazy_execution;
|
|
};
|
|
|
|
/** Function is called "short-circuit" if it's arguments can be evaluated lazily
|
|
* (examples: and, or, if, multiIf). If function is short circuit, it should be
|
|
* able to work with lazy executed arguments,
|
|
* this method will be called before function execution.
|
|
* If function is short circuit, it must define all fields in settings for
|
|
* appropriate preparations. Number of arguments is provided because some settings might depend on it.
|
|
* Example: multiIf(cond, else, then) and multiIf(cond1, else1, cond2, else2, ...), the first
|
|
* version can enable enable_lazy_execution_for_common_descendants_of_arguments setting, the second - not.
|
|
*/
|
|
virtual bool isShortCircuit(ShortCircuitSettings & /*settings*/, size_t /*number_of_arguments*/) const { return false; }
|
|
|
|
/** Should we evaluate this function lazily in short-circuit function arguments?
|
|
* If function can throw an exception or it's computationally heavy, then
|
|
* it's suitable, otherwise it's not (due to the overhead of lazy execution).
|
|
* Suitability may depend on function arguments.
|
|
*/
|
|
virtual bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const = 0;
|
|
|
|
/// The property of monotonicity for a certain range.
|
|
struct Monotonicity
|
|
{
|
|
bool is_monotonic = false; /// Is the function monotonous (non-decreasing or non-increasing).
|
|
bool is_positive = true; /// true if the function is non-decreasing, false if non-increasing. If is_monotonic = false, then it does not matter.
|
|
bool is_always_monotonic = false; /// Is true if function is monotonic on the whole input range I
|
|
bool is_strict = false; /// true if the function is strictly decreasing or increasing.
|
|
};
|
|
|
|
/** Get information about monotonicity on a range of values. Call only if hasInformationAboutMonotonicity.
|
|
* NULL can be passed as one of the arguments. This means that the corresponding range is unlimited on the left or on the right.
|
|
*/
|
|
virtual Monotonicity getMonotonicityForRange(const IDataType & /*type*/, const Field & /*left*/, const Field & /*right*/) const
|
|
{
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Function {} has no information about its monotonicity", getName());
|
|
}
|
|
|
|
/** Get the preimage of a function in the form of a left-closed and right-open interval. Call only if hasInformationAboutPreimage.
|
|
* std::nullopt might be returned if the point (a single value) is invalid for this function.
|
|
*/
|
|
virtual OptionalFieldInterval getPreimage(const IDataType & /*type*/, const Field & /*point*/) const
|
|
{
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Function {} has no information about its preimage", getName());
|
|
}
|
|
|
|
};
|
|
|
|
using FunctionBasePtr = std::shared_ptr<const IFunctionBase>;
|
|
|
|
|
|
/** Creates IFunctionBase from argument types list (chooses one function overload).
|
|
*/
|
|
class IFunctionOverloadResolver
|
|
{
|
|
public:
|
|
virtual ~IFunctionOverloadResolver() = default;
|
|
|
|
virtual FunctionBasePtr build(const ColumnsWithTypeAndName & arguments) const;
|
|
|
|
void getLambdaArgumentTypes(DataTypes & arguments) const;
|
|
|
|
void checkNumberOfArguments(size_t number_of_arguments) const;
|
|
|
|
/// Get the main function name.
|
|
virtual String getName() const = 0;
|
|
|
|
/// For non-variadic functions, return number of arguments; otherwise return zero (that should be ignored).
|
|
virtual size_t getNumberOfArguments() const = 0;
|
|
|
|
/// TODO: This method should not be duplicated here and in IFunctionBase
|
|
/// See the comment for the same method in IFunctionBase
|
|
virtual bool isDeterministic() const { return true; }
|
|
virtual bool isDeterministicInScopeOfQuery() const { return true; }
|
|
virtual bool isInjective(const ColumnsWithTypeAndName &) const { return false; }
|
|
|
|
/// Override and return true if function needs to depend on the state of the data.
|
|
virtual bool isStateful() const { return false; }
|
|
|
|
/// Override and return true if function could take different number of arguments.
|
|
virtual bool isVariadic() const { return false; }
|
|
|
|
/// For non-variadic functions, return number of arguments; otherwise return zero (that should be ignored).
|
|
/// For higher-order functions (functions, that have lambda expression as at least one argument).
|
|
/// You pass data types with empty DataTypeFunction for lambda arguments.
|
|
/// This function will replace it with DataTypeFunction containing actual types.
|
|
virtual void getLambdaArgumentTypesImpl(DataTypes & arguments [[maybe_unused]]) const
|
|
{
|
|
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Function {} can't have lambda-expressions as arguments", getName());
|
|
}
|
|
|
|
/// Returns indexes of arguments, that must be ColumnConst
|
|
virtual ColumnNumbers getArgumentsThatAreAlwaysConstant() const { return {}; }
|
|
|
|
/// Returns indexes if arguments, that can be Nullable without making result of function Nullable
|
|
/// (for functions like isNull(x))
|
|
virtual ColumnNumbers getArgumentsThatDontImplyNullableReturnType(size_t number_of_arguments [[maybe_unused]]) const { return {}; }
|
|
|
|
protected:
|
|
|
|
virtual FunctionBasePtr buildImpl(const ColumnsWithTypeAndName & /* arguments */, const DataTypePtr & /* result_type */) const
|
|
{
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "buildImpl is not implemented for {}", getName());
|
|
}
|
|
|
|
virtual DataTypePtr getReturnTypeImpl(const DataTypes & /*arguments*/) const
|
|
{
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "getReturnType is not implemented for {}", getName());
|
|
}
|
|
|
|
/// This function will be called in default implementation. You can overload it or the previous one.
|
|
virtual DataTypePtr getReturnTypeImpl(const ColumnsWithTypeAndName & arguments) const
|
|
{
|
|
DataTypes data_types(arguments.size());
|
|
for (size_t i = 0; i < arguments.size(); ++i)
|
|
data_types[i] = arguments[i].type;
|
|
|
|
return getReturnTypeImpl(data_types);
|
|
}
|
|
|
|
/** If useDefaultImplementationForNulls() is true, then change arguments for getReturnType() and build():
|
|
* if some of arguments are Nullable(Nothing) then don't call getReturnType(), call build() with return_type = Nullable(Nothing),
|
|
* if some of arguments are Nullable, then:
|
|
* - Nullable types are substituted with nested types for getReturnType() function
|
|
* - wrap getReturnType() result in Nullable type and pass to build
|
|
*
|
|
* Otherwise build returns build(arguments, getReturnType(arguments));
|
|
*/
|
|
virtual bool useDefaultImplementationForNulls() const { return true; }
|
|
|
|
/** If useDefaultImplementationForNothing() is true, then change arguments for getReturnType() and build():
|
|
* if some of arguments are Nothing then don't call getReturnType(), call build() with return_type = Nothing,
|
|
* Otherwise build returns build(arguments, getReturnType(arguments));
|
|
*/
|
|
virtual bool useDefaultImplementationForNothing() const { return true; }
|
|
|
|
/** If useDefaultImplementationForLowCardinalityColumns() is true, then change arguments for getReturnType() and build().
|
|
* If function arguments has low cardinality types, convert them to ordinary types.
|
|
* getReturnType returns ColumnLowCardinality if at least one argument type is ColumnLowCardinality.
|
|
*/
|
|
virtual bool useDefaultImplementationForLowCardinalityColumns() const { return true; }
|
|
|
|
/** If function arguments has single sparse column and all other arguments are constants, call function on nested column.
|
|
* Otherwise, convert all sparse columns to ordinary columns.
|
|
* If default value doesn't change after function execution, returns sparse column as a result.
|
|
* Otherwise, result column is converted to full.
|
|
*/
|
|
virtual bool useDefaultImplementationForSparseColumns() const { return true; }
|
|
|
|
/// If it isn't, will convert all ColumnLowCardinality arguments to full columns.
|
|
virtual bool canBeExecutedOnLowCardinalityDictionary() const { return true; }
|
|
|
|
private:
|
|
|
|
DataTypePtr getReturnType(const ColumnsWithTypeAndName & arguments) const;
|
|
|
|
DataTypePtr getReturnTypeWithoutLowCardinality(const ColumnsWithTypeAndName & arguments) const;
|
|
};
|
|
|
|
using FunctionOverloadResolverPtr = std::shared_ptr<IFunctionOverloadResolver>;
|
|
|
|
/// Old function interface. Check documentation in IFunction.h.
|
|
/// If client do not need stateful properties it can implement this interface.
|
|
class IFunction
|
|
{
|
|
public:
|
|
|
|
virtual ~IFunction() = default;
|
|
|
|
virtual String getName() const = 0;
|
|
|
|
virtual ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const = 0;
|
|
virtual ColumnPtr executeImplDryRun(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const
|
|
{
|
|
return executeImpl(arguments, result_type, input_rows_count);
|
|
}
|
|
|
|
/** Default implementation in presence of Nullable arguments or NULL constants as arguments is the following:
|
|
* if some of arguments are NULL constants then return NULL constant,
|
|
* if some of arguments are Nullable, then execute function as usual for columns,
|
|
* where Nullable columns are substituted with nested columns (they have arbitrary values in rows corresponding to NULL value)
|
|
* and wrap result in Nullable column where NULLs are in all rows where any of arguments are NULL.
|
|
*/
|
|
virtual bool useDefaultImplementationForNulls() const { return true; }
|
|
|
|
/** Default implementation in presence of arguments with type Nothing is the following:
|
|
* If some of arguments have type Nothing then default implementation is to return constant column with type Nothing
|
|
*/
|
|
virtual bool useDefaultImplementationForNothing() const { return true; }
|
|
|
|
/** If the function have non-zero number of arguments,
|
|
* and if all arguments are constant, that we could automatically provide default implementation:
|
|
* arguments are converted to ordinary columns with single value, then function is executed as usual,
|
|
* and then the result is converted to constant column.
|
|
*/
|
|
virtual bool useDefaultImplementationForConstants() const { return false; }
|
|
|
|
/** Some arguments could remain constant during this implementation.
|
|
*/
|
|
virtual ColumnNumbers getArgumentsThatAreAlwaysConstant() const { return {}; }
|
|
|
|
/** If function arguments has single low cardinality column and all other arguments are constants, call function on nested column.
|
|
* Otherwise, convert all low cardinality columns to ordinary columns.
|
|
* Returns ColumnLowCardinality if at least one argument is ColumnLowCardinality.
|
|
*/
|
|
virtual bool useDefaultImplementationForLowCardinalityColumns() const { return true; }
|
|
|
|
/** If function arguments has single sparse column and all other arguments are constants, call function on nested column.
|
|
* Otherwise, convert all sparse columns to ordinary columns.
|
|
* If default value doesn't change after function execution, returns sparse column as a result.
|
|
* Otherwise, result column is converted to full.
|
|
*/
|
|
virtual bool useDefaultImplementationForSparseColumns() const { return true; }
|
|
|
|
/// If it isn't, will convert all ColumnLowCardinality arguments to full columns.
|
|
virtual bool canBeExecutedOnLowCardinalityDictionary() const { return true; }
|
|
|
|
/** True if function can be called on default arguments (include Nullable's) and won't throw.
|
|
* Counterexample: modulo(0, 0)
|
|
*/
|
|
virtual bool canBeExecutedOnDefaultArguments() const { return true; }
|
|
|
|
/// Properties from IFunctionBase (see IFunction.h)
|
|
virtual bool isSuitableForConstantFolding() const { return true; }
|
|
virtual ColumnPtr getConstantResultForNonConstArguments(const ColumnsWithTypeAndName & /*arguments*/, const DataTypePtr & /*result_type*/) const { return nullptr; }
|
|
virtual bool isInjective(const ColumnsWithTypeAndName & /*sample_columns*/) const { return false; }
|
|
virtual bool isDeterministic() const { return true; }
|
|
virtual bool isDeterministicInScopeOfQuery() const { return true; }
|
|
virtual bool isStateful() const { return false; }
|
|
|
|
using ShortCircuitSettings = IFunctionBase::ShortCircuitSettings;
|
|
virtual bool isShortCircuit(ShortCircuitSettings & /*settings*/, size_t /*number_of_arguments*/) const { return false; }
|
|
virtual bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const = 0;
|
|
|
|
virtual bool hasInformationAboutMonotonicity() const { return false; }
|
|
virtual bool hasInformationAboutPreimage() const { return false; }
|
|
|
|
using Monotonicity = IFunctionBase::Monotonicity;
|
|
virtual Monotonicity getMonotonicityForRange(const IDataType & /*type*/, const Field & /*left*/, const Field & /*right*/) const
|
|
{
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Function {} has no information about its monotonicity", getName());
|
|
}
|
|
virtual OptionalFieldInterval getPreimage(const IDataType & /*type*/, const Field & /*point*/) const
|
|
{
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Function {} has no information about its preimage", getName());
|
|
}
|
|
|
|
/// For non-variadic functions, return number of arguments; otherwise return zero (that should be ignored).
|
|
virtual size_t getNumberOfArguments() const = 0;
|
|
|
|
virtual DataTypePtr getReturnTypeImpl(const DataTypes & /*arguments*/) const
|
|
{
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "getReturnType is not implemented for {}", getName());
|
|
}
|
|
|
|
/// Get the result type by argument type. If the function does not apply to these arguments, throw an exception.
|
|
virtual DataTypePtr getReturnTypeImpl(const ColumnsWithTypeAndName & arguments) const
|
|
{
|
|
DataTypes data_types(arguments.size());
|
|
for (size_t i = 0; i < arguments.size(); ++i)
|
|
data_types[i] = arguments[i].type;
|
|
|
|
return getReturnTypeImpl(data_types);
|
|
}
|
|
|
|
virtual bool isVariadic() const { return false; }
|
|
|
|
virtual void getLambdaArgumentTypes(DataTypes & /*arguments*/) const
|
|
{
|
|
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Function {} can't have lambda-expressions as arguments", getName());
|
|
}
|
|
|
|
virtual ColumnNumbers getArgumentsThatDontImplyNullableReturnType(size_t /*number_of_arguments*/) const { return {}; }
|
|
|
|
|
|
#if USE_EMBEDDED_COMPILER
|
|
|
|
bool isCompilable(const DataTypes & arguments, const DataTypePtr & result_type) const;
|
|
|
|
llvm::Value * compile(llvm::IRBuilderBase & builder, const ValuesWithType & arguments, const DataTypePtr & result_type) const;
|
|
|
|
#endif
|
|
|
|
protected:
|
|
|
|
#if USE_EMBEDDED_COMPILER
|
|
|
|
virtual bool isCompilableImpl(const DataTypes & /*arguments*/, const DataTypePtr & /*result_type*/) const { return false; }
|
|
|
|
virtual llvm::Value * compileImpl(llvm::IRBuilderBase & /*builder*/, const ValuesWithType & /*arguments*/, const DataTypePtr & /*result_type*/) const
|
|
{
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "{} is not JIT-compilable", getName());
|
|
}
|
|
|
|
#endif
|
|
};
|
|
|
|
using FunctionPtr = std::shared_ptr<IFunction>;
|
|
|
|
}
|