ClickHouse/dbms/src/Common/PODArray.h
2017-07-25 22:07:07 +03:00

493 lines
16 KiB
C++

#pragma once
#include <string.h>
#include <cstddef>
#include <algorithm>
#include <memory>
#include <boost/noncopyable.hpp>
#include <boost/iterator_adaptors.hpp>
#include <common/likely.h>
#include <common/strong_typedef.h>
#include <Common/Allocator.h>
#include <Common/Exception.h>
#include <Common/BitHelpers.h>
namespace DB
{
/** A dynamic array for POD types.
* Designed for a small number of large arrays (rather than a lot of small ones).
* To be more precise - for use in ColumnVector.
* It differs from std::vector in that it does not initialize the elements.
*
* Made noncopyable so that there are no accidential copies. You can copy the data using `assign` method.
*
* Only part of the std::vector interface is supported.
*
* The default constructor creates an empty object that does not allocate memory.
* Then the memory is allocated at least INITIAL_SIZE bytes.
*
* If you insert elements with push_back, without making a `reserve`, then PODArray is about 2.5 times faster than std::vector.
*
* The template parameter `pad_right` - always allocate at the end of the array as many unused bytes.
* Can be used to make optimistic reading, writing, copying with unaligned SIMD instructions.
*
* Some methods using allocator have TAllocatorParams variadic arguments.
* These arguments will be passed to corresponding methods of TAllocator.
* Example: pointer to Arena, that is used for allocations.
*
* Why Allocator is not passed through constructor, as it is done in C++ standard library?
* Because sometimes we have many small objects, that share same allocator with same parameters,
* and we must avoid larger object size due to storing the same parameters in each object.
* This is required for states of aggregate functions.
*/
template <typename T, size_t INITIAL_SIZE = 4096, typename TAllocator = Allocator<false>, size_t pad_right_ = 0>
class PODArray : private boost::noncopyable, private TAllocator /// empty base optimization
{
protected:
/// Round padding up to an whole number of elements to simplify arithmetic.
static constexpr size_t pad_right = (pad_right_ + sizeof(T) - 1) / sizeof(T) * sizeof(T);
char * c_start = nullptr;
char * c_end = nullptr;
char * c_end_of_storage = nullptr; /// Does not include pad_right.
T * t_start() { return reinterpret_cast<T *>(c_start); }
T * t_end() { return reinterpret_cast<T *>(c_end); }
T * t_end_of_storage() { return reinterpret_cast<T *>(c_end_of_storage); }
const T * t_start() const { return reinterpret_cast<const T *>(c_start); }
const T * t_end() const { return reinterpret_cast<const T *>(c_end); }
const T * t_end_of_storage() const { return reinterpret_cast<const T *>(c_end_of_storage); }
/// The amount of memory occupied by the num_elements of the elements.
static size_t byte_size(size_t num_elements) { return num_elements * sizeof(T); }
/// Minimum amount of memory to allocate for num_elements, including padding.
static size_t minimum_memory_for_elements(size_t num_elements) { return byte_size(num_elements) + pad_right; }
void alloc_for_num_elements(size_t num_elements)
{
alloc(roundUpToPowerOfTwoOrZero(minimum_memory_for_elements(num_elements)));
}
template <typename ... TAllocatorParams>
void alloc(size_t bytes, TAllocatorParams ... allocator_params)
{
c_start = c_end = reinterpret_cast<char *>(TAllocator::alloc(bytes, std::forward<TAllocatorParams>(allocator_params)...));
c_end_of_storage = c_start + bytes - pad_right;
}
void dealloc()
{
if (c_start == nullptr)
return;
TAllocator::free(c_start, allocated_bytes());
}
template <typename ... TAllocatorParams>
void realloc(size_t bytes, TAllocatorParams ... allocator_params)
{
if (c_start == nullptr)
{
alloc(bytes, std::forward<TAllocatorParams>(allocator_params)...);
return;
}
ptrdiff_t end_diff = c_end - c_start;
c_start = reinterpret_cast<char *>(TAllocator::realloc(c_start, allocated_bytes(), bytes, std::forward<TAllocatorParams>(allocator_params)...));
c_end = c_start + end_diff;
c_end_of_storage = c_start + bytes - pad_right;
}
bool isInitialized() const
{
return (c_start != nullptr) && (c_end != nullptr) && (c_end_of_storage != nullptr);
}
bool isAllocatedFromStack() const
{
constexpr size_t stack_threshold = TAllocator::getStackThreshold();
return (stack_threshold > 0) && (allocated_bytes() <= stack_threshold);
}
template <typename ... TAllocatorParams>
void reserveForNextSize(TAllocatorParams ... allocator_params)
{
if (size() == 0)
realloc(std::max(INITIAL_SIZE, minimum_memory_for_elements(1)), std::forward<TAllocatorParams>(allocator_params)...);
else
realloc(allocated_bytes() * 2, std::forward<TAllocatorParams>(allocator_params)...);
}
public:
using value_type = T;
size_t allocated_bytes() const { return c_end_of_storage - c_start + pad_right; }
/// You can not just use `typedef`, because there is ambiguity for the constructors and `assign` functions.
struct iterator : public boost::iterator_adaptor<iterator, T*>
{
iterator() {}
iterator(T * ptr_) : iterator::iterator_adaptor_(ptr_) {}
};
struct const_iterator : public boost::iterator_adaptor<const_iterator, const T*>
{
const_iterator() {}
const_iterator(const T * ptr_) : const_iterator::iterator_adaptor_(ptr_) {}
};
PODArray() {}
PODArray(size_t n)
{
alloc_for_num_elements(n);
c_end += byte_size(n);
}
PODArray(size_t n, const T & x)
{
alloc_for_num_elements(n);
assign(n, x);
}
PODArray(const_iterator from_begin, const_iterator from_end)
{
alloc_for_num_elements(from_end - from_begin);
insert(from_begin, from_end);
}
~PODArray()
{
dealloc();
}
PODArray(PODArray && other)
{
this->swap(other);
}
PODArray & operator=(PODArray && other)
{
this->swap(other);
return *this;
}
T * data() { return t_start(); }
const T * data() const { return t_start(); }
size_t size() const { return t_end() - t_start(); }
bool empty() const { return t_end() == t_start(); }
size_t capacity() const { return t_end_of_storage() - t_start(); }
T & operator[] (size_t n) { return t_start()[n]; }
const T & operator[] (size_t n) const { return t_start()[n]; }
T & front() { return t_start()[0]; }
T & back() { return t_end()[-1]; }
const T & front() const { return t_start()[0]; }
const T & back() const { return t_end()[-1]; }
iterator begin() { return t_start(); }
iterator end() { return t_end(); }
const_iterator begin() const { return t_start(); }
const_iterator end() const { return t_end(); }
const_iterator cbegin() const { return t_start(); }
const_iterator cend() const { return t_end(); }
template <typename ... TAllocatorParams>
void reserve(size_t n, TAllocatorParams ... allocator_params)
{
if (n > capacity())
realloc(roundUpToPowerOfTwoOrZero(minimum_memory_for_elements(n)), std::forward<TAllocatorParams>(allocator_params)...);
}
template <typename ... TAllocatorParams>
void resize(size_t n, TAllocatorParams ... allocator_params)
{
reserve(n, std::forward<TAllocatorParams>(allocator_params)...);
resize_assume_reserved(n);
}
void resize_assume_reserved(const size_t n)
{
c_end = c_start + byte_size(n);
}
/// Same as resize, but zeroes new elements.
void resize_fill(size_t n)
{
size_t old_size = size();
if (n > old_size)
{
reserve(n);
memset(c_end, 0, byte_size(n - old_size));
}
c_end = c_start + byte_size(n);
}
void resize_fill(size_t n, const T & value)
{
size_t old_size = size();
if (n > old_size)
{
reserve(n);
std::fill(t_end(), t_end() + n - old_size, value);
}
c_end = c_start + byte_size(n);
}
void clear()
{
c_end = c_start;
}
template <typename ... TAllocatorParams>
void push_back(const T & x, TAllocatorParams ... allocator_params)
{
if (unlikely(c_end == c_end_of_storage))
reserveForNextSize(std::forward<TAllocatorParams>(allocator_params)...);
*t_end() = x;
c_end += byte_size(1);
}
/** This method doesn't allow to pass parameters for Allocator,
* and it couldn't be used if Allocator requires custom parameters.
*/
template <typename... Args>
void emplace_back(Args &&... args)
{
if (unlikely(c_end == c_end_of_storage))
reserveForNextSize();
new (t_end()) T(std::forward<Args>(args)...);
c_end += byte_size(1);
}
void pop_back()
{
c_end -= byte_size(1);
}
/// Do not insert into the array a piece of itself. Because with the resize, the iterators on themselves can be invalidated.
template <typename It1, typename It2, typename ... TAllocatorParams>
void insert(It1 from_begin, It2 from_end, TAllocatorParams ... allocator_params)
{
size_t required_capacity = size() + (from_end - from_begin);
if (required_capacity > capacity())
reserve(roundUpToPowerOfTwoOrZero(required_capacity), std::forward<TAllocatorParams>(allocator_params)...);
insert_assume_reserved(from_begin, from_end);
}
template <typename It1, typename It2>
void insert(iterator it, It1 from_begin, It2 from_end)
{
size_t required_capacity = size() + (from_end - from_begin);
if (required_capacity > capacity())
reserve(roundUpToPowerOfTwoOrZero(required_capacity));
size_t bytes_to_copy = byte_size(from_end - from_begin);
size_t bytes_to_move = (end() - it) * sizeof(T);
if (unlikely(bytes_to_move))
memcpy(c_end + bytes_to_copy - bytes_to_move, c_end - bytes_to_move, bytes_to_move);
memcpy(c_end - bytes_to_move, reinterpret_cast<const void *>(&*from_begin), bytes_to_copy);
c_end += bytes_to_copy;
}
template <typename It1, typename It2>
void insert_assume_reserved(It1 from_begin, It2 from_end)
{
size_t bytes_to_copy = byte_size(from_end - from_begin);
memcpy(c_end, reinterpret_cast<const void *>(&*from_begin), bytes_to_copy);
c_end += bytes_to_copy;
}
void swap(PODArray & rhs)
{
/// Swap two PODArray objects, arr1 and arr2, that satisfy the following conditions:
/// - The elements of arr1 are stored on stack.
/// - The elements of arr2 are stored on heap.
auto swap_stack_heap = [](PODArray & arr1, PODArray & arr2)
{
size_t stack_size = arr1.size();
size_t stack_allocated = arr1.allocated_bytes();
size_t heap_size = arr2.size();
size_t heap_allocated = arr2.allocated_bytes();
/// Keep track of the stack content we have to copy.
char * stack_c_start = arr1.c_start;
/// arr1 takes ownership of the heap memory of arr2.
arr1.c_start = arr2.c_start;
arr1.c_end_of_storage = arr1.c_start + heap_allocated - arr1.pad_right;
arr1.c_end = arr1.c_start + byte_size(heap_size);
/// Allocate stack space for arr2.
arr2.alloc(stack_allocated);
/// Copy the stack content.
memcpy(arr2.c_start, stack_c_start, byte_size(stack_size));
arr2.c_end = arr2.c_start + byte_size(stack_size);
};
auto do_move = [](PODArray & src, PODArray & dest)
{
if (src.isAllocatedFromStack())
{
dest.dealloc();
dest.alloc(src.allocated_bytes());
memcpy(dest.c_start, src.c_start, byte_size(src.size()));
dest.c_end = dest.c_start + (src.c_end - src.c_start);
src.c_start = nullptr;
src.c_end = nullptr;
src.c_end_of_storage = nullptr;
}
else
{
std::swap(dest.c_start, src.c_start);
std::swap(dest.c_end, src.c_end);
std::swap(dest.c_end_of_storage, src.c_end_of_storage);
}
};
if (!isInitialized() && !rhs.isInitialized())
return;
else if (!isInitialized() && rhs.isInitialized())
{
do_move(rhs, *this);
return;
}
else if (isInitialized() && !rhs.isInitialized())
{
do_move(*this, rhs);
return;
}
if (isAllocatedFromStack() && rhs.isAllocatedFromStack())
{
size_t min_size = std::min(size(), rhs.size());
size_t max_size = std::max(size(), rhs.size());
for (size_t i = 0; i < min_size; ++i)
std::swap(this->operator[](i), rhs[i]);
if (size() == max_size)
{
for (size_t i = min_size; i < max_size; ++i)
rhs[i] = this->operator[](i);
}
else
{
for (size_t i = min_size; i < max_size; ++i)
this->operator[](i) = rhs[i];
}
size_t lhs_size = size();
size_t lhs_allocated = allocated_bytes();
size_t rhs_size = rhs.size();
size_t rhs_allocated = rhs.allocated_bytes();
c_end_of_storage = c_start + rhs_allocated - pad_right;
rhs.c_end_of_storage = rhs.c_start + lhs_allocated - pad_right;
c_end = c_start + byte_size(rhs_size);
rhs.c_end = rhs.c_start + byte_size(lhs_size);
}
else if (isAllocatedFromStack() && !rhs.isAllocatedFromStack())
swap_stack_heap(*this, rhs);
else if (!isAllocatedFromStack() && rhs.isAllocatedFromStack())
swap_stack_heap(rhs, *this);
else
{
std::swap(c_start, rhs.c_start);
std::swap(c_end, rhs.c_end);
std::swap(c_end_of_storage, rhs.c_end_of_storage);
}
}
void assign(size_t n, const T & x)
{
resize(n);
std::fill(begin(), end(), x);
}
template <typename It1, typename It2>
void assign(It1 from_begin, It2 from_end)
{
size_t required_capacity = from_end - from_begin;
if (required_capacity > capacity())
reserve(roundUpToPowerOfTwoOrZero(required_capacity));
size_t bytes_to_copy = byte_size(required_capacity);
memcpy(c_start, reinterpret_cast<const void *>(&*from_begin), bytes_to_copy);
c_end = c_start + bytes_to_copy;
}
void assign(const PODArray & from)
{
assign(from.begin(), from.end());
}
bool operator== (const PODArray & other) const
{
if (size() != other.size())
return false;
const_iterator this_it = begin();
const_iterator that_it = other.begin();
while (this_it != end())
{
if (*this_it != *that_it)
return false;
++this_it;
++that_it;
}
return true;
}
bool operator!= (const PODArray & other) const
{
return !operator==(other);
}
};
template <typename T, size_t INITIAL_SIZE, typename TAllocator, size_t pad_right_>
void swap(PODArray<T, INITIAL_SIZE, TAllocator, pad_right_> & lhs, PODArray<T, INITIAL_SIZE, TAllocator, pad_right_> & rhs)
{
lhs.swap(rhs);
}
/** For columns. Padding is enough to read and write xmm-register at the address of the last element. */
template <typename T, size_t INITIAL_SIZE = 4096, typename TAllocator = Allocator<false>>
using PaddedPODArray = PODArray<T, INITIAL_SIZE, TAllocator, 15>;
inline constexpr size_t integerRound(size_t value, size_t dividend)
{
return ((value + dividend - 1) / dividend) * dividend;
}
template <typename T, size_t stack_size_in_bytes>
using PODArrayWithStackMemory = PODArray<T, 0, AllocatorWithStackMemory<Allocator<false>, integerRound(stack_size_in_bytes, sizeof(T))>>;
}