ClickHouse/docs/en/sql-reference/statements/select/array-join.md
2023-03-23 14:40:45 -06:00

307 lines
11 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
slug: /en/sql-reference/statements/select/array-join
sidebar_label: ARRAY JOIN
---
# ARRAY JOIN Clause
It is a common operation for tables that contain an array column to produce a new table that has a column with each individual array element of that initial column, while values of other columns are duplicated. This is the basic case of what `ARRAY JOIN` clause does.
Its name comes from the fact that it can be looked at as executing `JOIN` with an array or nested data structure. The intent is similar to the [arrayJoin](../../../sql-reference/functions/array-join.md#functions_arrayjoin) function, but the clause functionality is broader.
Syntax:
``` sql
SELECT <expr_list>
FROM <left_subquery>
[LEFT] ARRAY JOIN <array>
[WHERE|PREWHERE <expr>]
...
```
You can specify only one `ARRAY JOIN` clause in a `SELECT` query.
Supported types of `ARRAY JOIN` are listed below:
- `ARRAY JOIN` - In base case, empty arrays are not included in the result of `JOIN`.
- `LEFT ARRAY JOIN` - The result of `JOIN` contains rows with empty arrays. The value for an empty array is set to the default value for the array element type (usually 0, empty string or NULL).
## Basic ARRAY JOIN Examples
The examples below demonstrate the usage of the `ARRAY JOIN` and `LEFT ARRAY JOIN` clauses. Lets create a table with an [Array](../../../sql-reference/data-types/array.md) type column and insert values into it:
``` sql
CREATE TABLE arrays_test
(
s String,
arr Array(UInt8)
) ENGINE = Memory;
INSERT INTO arrays_test
VALUES ('Hello', [1,2]), ('World', [3,4,5]), ('Goodbye', []);
```
``` text
┌─s───────────┬─arr─────┐
│ Hello │ [1,2] │
│ World │ [3,4,5] │
│ Goodbye │ [] │
└─────────────┴─────────┘
```
The example below uses the `ARRAY JOIN` clause:
``` sql
SELECT s, arr
FROM arrays_test
ARRAY JOIN arr;
```
``` text
┌─s─────┬─arr─┐
│ Hello │ 1 │
│ Hello │ 2 │
│ World │ 3 │
│ World │ 4 │
│ World │ 5 │
└───────┴─────┘
```
The next example uses the `LEFT ARRAY JOIN` clause:
``` sql
SELECT s, arr
FROM arrays_test
LEFT ARRAY JOIN arr;
```
``` text
┌─s───────────┬─arr─┐
│ Hello │ 1 │
│ Hello │ 2 │
│ World │ 3 │
│ World │ 4 │
│ World │ 5 │
│ Goodbye │ 0 │
└─────────────┴─────┘
```
## Using Aliases
An alias can be specified for an array in the `ARRAY JOIN` clause. In this case, an array item can be accessed by this alias, but the array itself is accessed by the original name. Example:
``` sql
SELECT s, arr, a
FROM arrays_test
ARRAY JOIN arr AS a;
```
``` text
┌─s─────┬─arr─────┬─a─┐
│ Hello │ [1,2] │ 1 │
│ Hello │ [1,2] │ 2 │
│ World │ [3,4,5] │ 3 │
│ World │ [3,4,5] │ 4 │
│ World │ [3,4,5] │ 5 │
└───────┴─────────┴───┘
```
Using aliases, you can perform `ARRAY JOIN` with an external array. For example:
``` sql
SELECT s, arr_external
FROM arrays_test
ARRAY JOIN [1, 2, 3] AS arr_external;
```
``` text
┌─s───────────┬─arr_external─┐
│ Hello │ 1 │
│ Hello │ 2 │
│ Hello │ 3 │
│ World │ 1 │
│ World │ 2 │
│ World │ 3 │
│ Goodbye │ 1 │
│ Goodbye │ 2 │
│ Goodbye │ 3 │
└─────────────┴──────────────┘
```
Multiple arrays can be comma-separated in the `ARRAY JOIN` clause. In this case, `JOIN` is performed with them simultaneously (the direct sum, not the cartesian product). Note that all the arrays must have the same size by default. Example:
``` sql
SELECT s, arr, a, num, mapped
FROM arrays_test
ARRAY JOIN arr AS a, arrayEnumerate(arr) AS num, arrayMap(x -> x + 1, arr) AS mapped;
```
``` text
┌─s─────┬─arr─────┬─a─┬─num─┬─mapped─┐
│ Hello │ [1,2] │ 1 │ 1 │ 2 │
│ Hello │ [1,2] │ 2 │ 2 │ 3 │
│ World │ [3,4,5] │ 3 │ 1 │ 4 │
│ World │ [3,4,5] │ 4 │ 2 │ 5 │
│ World │ [3,4,5] │ 5 │ 3 │ 6 │
└───────┴─────────┴───┴─────┴────────┘
```
The example below uses the [arrayEnumerate](../../../sql-reference/functions/array-functions.md#array_functions-arrayenumerate) function:
``` sql
SELECT s, arr, a, num, arrayEnumerate(arr)
FROM arrays_test
ARRAY JOIN arr AS a, arrayEnumerate(arr) AS num;
```
``` text
┌─s─────┬─arr─────┬─a─┬─num─┬─arrayEnumerate(arr)─┐
│ Hello │ [1,2] │ 1 │ 1 │ [1,2] │
│ Hello │ [1,2] │ 2 │ 2 │ [1,2] │
│ World │ [3,4,5] │ 3 │ 1 │ [1,2,3] │
│ World │ [3,4,5] │ 4 │ 2 │ [1,2,3] │
│ World │ [3,4,5] │ 5 │ 3 │ [1,2,3] │
└───────┴─────────┴───┴─────┴─────────────────────┘
```
Multiple arrays with different sizes can be joined by using: `SETTINGS enable_unaligned_array_join = 1`. Example:
```sql
SELECT s, arr, a, b
FROM arrays_test ARRAY JOIN arr as a, [['a','b'],['c']] as b
SETTINGS enable_unaligned_array_join = 1;
```
```text
┌─s───────┬─arr─────┬─a─┬─b─────────┐
│ Hello │ [1,2] │ 1 │ ['a','b'] │
│ Hello │ [1,2] │ 2 │ ['c'] │
│ World │ [3,4,5] │ 3 │ ['a','b'] │
│ World │ [3,4,5] │ 4 │ ['c'] │
│ World │ [3,4,5] │ 5 │ [] │
│ Goodbye │ [] │ 0 │ ['a','b'] │
│ Goodbye │ [] │ 0 │ ['c'] │
└─────────┴─────────┴───┴───────────┘
```
## ARRAY JOIN with Nested Data Structure
`ARRAY JOIN` also works with [nested data structures](../../../sql-reference/data-types/nested-data-structures/index.md):
``` sql
CREATE TABLE nested_test
(
s String,
nest Nested(
x UInt8,
y UInt32)
) ENGINE = Memory;
INSERT INTO nested_test
VALUES ('Hello', [1,2], [10,20]), ('World', [3,4,5], [30,40,50]), ('Goodbye', [], []);
```
``` text
┌─s───────┬─nest.x──┬─nest.y─────┐
│ Hello │ [1,2] │ [10,20] │
│ World │ [3,4,5] │ [30,40,50] │
│ Goodbye │ [] │ [] │
└─────────┴─────────┴────────────┘
```
``` sql
SELECT s, `nest.x`, `nest.y`
FROM nested_test
ARRAY JOIN nest;
```
``` text
┌─s─────┬─nest.x─┬─nest.y─┐
│ Hello │ 1 │ 10 │
│ Hello │ 2 │ 20 │
│ World │ 3 │ 30 │
│ World │ 4 │ 40 │
│ World │ 5 │ 50 │
└───────┴────────┴────────┘
```
When specifying names of nested data structures in `ARRAY JOIN`, the meaning is the same as `ARRAY JOIN` with all the array elements that it consists of. Examples are listed below:
``` sql
SELECT s, `nest.x`, `nest.y`
FROM nested_test
ARRAY JOIN `nest.x`, `nest.y`;
```
``` text
┌─s─────┬─nest.x─┬─nest.y─┐
│ Hello │ 1 │ 10 │
│ Hello │ 2 │ 20 │
│ World │ 3 │ 30 │
│ World │ 4 │ 40 │
│ World │ 5 │ 50 │
└───────┴────────┴────────┘
```
This variation also makes sense:
``` sql
SELECT s, `nest.x`, `nest.y`
FROM nested_test
ARRAY JOIN `nest.x`;
```
``` text
┌─s─────┬─nest.x─┬─nest.y─────┐
│ Hello │ 1 │ [10,20] │
│ Hello │ 2 │ [10,20] │
│ World │ 3 │ [30,40,50] │
│ World │ 4 │ [30,40,50] │
│ World │ 5 │ [30,40,50] │
└───────┴────────┴────────────┘
```
An alias may be used for a nested data structure, in order to select either the `JOIN` result or the source array. Example:
``` sql
SELECT s, `n.x`, `n.y`, `nest.x`, `nest.y`
FROM nested_test
ARRAY JOIN nest AS n;
```
``` text
┌─s─────┬─n.x─┬─n.y─┬─nest.x──┬─nest.y─────┐
│ Hello │ 1 │ 10 │ [1,2] │ [10,20] │
│ Hello │ 2 │ 20 │ [1,2] │ [10,20] │
│ World │ 3 │ 30 │ [3,4,5] │ [30,40,50] │
│ World │ 4 │ 40 │ [3,4,5] │ [30,40,50] │
│ World │ 5 │ 50 │ [3,4,5] │ [30,40,50] │
└───────┴─────┴─────┴─────────┴────────────┘
```
Example of using the [arrayEnumerate](../../../sql-reference/functions/array-functions.md#array_functions-arrayenumerate) function:
``` sql
SELECT s, `n.x`, `n.y`, `nest.x`, `nest.y`, num
FROM nested_test
ARRAY JOIN nest AS n, arrayEnumerate(`nest.x`) AS num;
```
``` text
┌─s─────┬─n.x─┬─n.y─┬─nest.x──┬─nest.y─────┬─num─┐
│ Hello │ 1 │ 10 │ [1,2] │ [10,20] │ 1 │
│ Hello │ 2 │ 20 │ [1,2] │ [10,20] │ 2 │
│ World │ 3 │ 30 │ [3,4,5] │ [30,40,50] │ 1 │
│ World │ 4 │ 40 │ [3,4,5] │ [30,40,50] │ 2 │
│ World │ 5 │ 50 │ [3,4,5] │ [30,40,50] │ 3 │
└───────┴─────┴─────┴─────────┴────────────┴─────┘
```
## Implementation Details
The query execution order is optimized when running `ARRAY JOIN`. Although `ARRAY JOIN` must always be specified before the [WHERE](../../../sql-reference/statements/select/where.md)/[PREWHERE](../../../sql-reference/statements/select/prewhere.md) clause in a query, technically they can be performed in any order, unless result of `ARRAY JOIN` is used for filtering. The processing order is controlled by the query optimizer.
## Related content
- Blog: [Working with time series data in ClickHouse](https://clickhouse.com/blog/working-with-time-series-data-and-functions-ClickHouse)