ClickHouse/docs/fa/getting-started/example-datasets/ontime.md
Ivan Blinkov cd14f9ebcb
SQL reference refactoring (#10857)
* split up select.md

* array-join.md basic refactoring

* distinct.md basic refactoring

* format.md basic refactoring

* from.md basic refactoring

* group-by.md basic refactoring

* having.md basic refactoring

* additional index.md refactoring

* into-outfile.md basic refactoring

* join.md basic refactoring

* limit.md basic refactoring

* limit-by.md basic refactoring

* order-by.md basic refactoring

* prewhere.md basic refactoring

* adjust operators/index.md links

* adjust sample.md links

* adjust more links

* adjust operatots links

* fix some links

* adjust aggregate function article titles

* basic refactor of remaining select clauses

* absolute paths in make_links.sh

* run make_links.sh

* remove old select.md locations

* translate docs/es

* translate docs/fr

* translate docs/fa

* remove old operators.md location

* change operators.md links

* adjust links in docs/es

* adjust links in docs/es

* minor texts adjustments

* wip

* update machine translations to use new links

* fix changelog

* es build fixes

* get rid of some select.md links

* temporary adjust ru links

* temporary adjust more ru links

* improve curly brace handling

* adjust ru as well

* fa build fix

* ru link fixes

* zh link fixes

* temporary disable part of anchor checks
2020-05-15 07:34:54 +03:00

413 lines
9.2 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
machine_translated: true
machine_translated_rev: 72537a2d527c63c07aa5d2361a8829f3895cf2bd
toc_priority: 15
toc_title: "\u0628\u0647 \u0645\u0648\u0642\u0639"
---
# به موقع {#ontime}
این مجموعه داده را می توان به دو روش دریافت کرد:
- واردات از دادههای خام
- دانلود پارتیشن های تهیه شده
## واردات از دادههای خام {#import-from-raw-data}
بارگیری داده ها:
``` bash
for s in `seq 1987 2018`
do
for m in `seq 1 12`
do
wget https://transtats.bts.gov/PREZIP/On_Time_Reporting_Carrier_On_Time_Performance_1987_present_${s}_${m}.zip
done
done
```
(از https://github.com/Percona-Lab/ontime-airline-performance/blob/master/download.sh )
ایجاد یک جدول:
``` sql
CREATE TABLE `ontime` (
`Year` UInt16,
`Quarter` UInt8,
`Month` UInt8,
`DayofMonth` UInt8,
`DayOfWeek` UInt8,
`FlightDate` Date,
`UniqueCarrier` FixedString(7),
`AirlineID` Int32,
`Carrier` FixedString(2),
`TailNum` String,
`FlightNum` String,
`OriginAirportID` Int32,
`OriginAirportSeqID` Int32,
`OriginCityMarketID` Int32,
`Origin` FixedString(5),
`OriginCityName` String,
`OriginState` FixedString(2),
`OriginStateFips` String,
`OriginStateName` String,
`OriginWac` Int32,
`DestAirportID` Int32,
`DestAirportSeqID` Int32,
`DestCityMarketID` Int32,
`Dest` FixedString(5),
`DestCityName` String,
`DestState` FixedString(2),
`DestStateFips` String,
`DestStateName` String,
`DestWac` Int32,
`CRSDepTime` Int32,
`DepTime` Int32,
`DepDelay` Int32,
`DepDelayMinutes` Int32,
`DepDel15` Int32,
`DepartureDelayGroups` String,
`DepTimeBlk` String,
`TaxiOut` Int32,
`WheelsOff` Int32,
`WheelsOn` Int32,
`TaxiIn` Int32,
`CRSArrTime` Int32,
`ArrTime` Int32,
`ArrDelay` Int32,
`ArrDelayMinutes` Int32,
`ArrDel15` Int32,
`ArrivalDelayGroups` Int32,
`ArrTimeBlk` String,
`Cancelled` UInt8,
`CancellationCode` FixedString(1),
`Diverted` UInt8,
`CRSElapsedTime` Int32,
`ActualElapsedTime` Int32,
`AirTime` Int32,
`Flights` Int32,
`Distance` Int32,
`DistanceGroup` UInt8,
`CarrierDelay` Int32,
`WeatherDelay` Int32,
`NASDelay` Int32,
`SecurityDelay` Int32,
`LateAircraftDelay` Int32,
`FirstDepTime` String,
`TotalAddGTime` String,
`LongestAddGTime` String,
`DivAirportLandings` String,
`DivReachedDest` String,
`DivActualElapsedTime` String,
`DivArrDelay` String,
`DivDistance` String,
`Div1Airport` String,
`Div1AirportID` Int32,
`Div1AirportSeqID` Int32,
`Div1WheelsOn` String,
`Div1TotalGTime` String,
`Div1LongestGTime` String,
`Div1WheelsOff` String,
`Div1TailNum` String,
`Div2Airport` String,
`Div2AirportID` Int32,
`Div2AirportSeqID` Int32,
`Div2WheelsOn` String,
`Div2TotalGTime` String,
`Div2LongestGTime` String,
`Div2WheelsOff` String,
`Div2TailNum` String,
`Div3Airport` String,
`Div3AirportID` Int32,
`Div3AirportSeqID` Int32,
`Div3WheelsOn` String,
`Div3TotalGTime` String,
`Div3LongestGTime` String,
`Div3WheelsOff` String,
`Div3TailNum` String,
`Div4Airport` String,
`Div4AirportID` Int32,
`Div4AirportSeqID` Int32,
`Div4WheelsOn` String,
`Div4TotalGTime` String,
`Div4LongestGTime` String,
`Div4WheelsOff` String,
`Div4TailNum` String,
`Div5Airport` String,
`Div5AirportID` Int32,
`Div5AirportSeqID` Int32,
`Div5WheelsOn` String,
`Div5TotalGTime` String,
`Div5LongestGTime` String,
`Div5WheelsOff` String,
`Div5TailNum` String
) ENGINE = MergeTree
PARTITION BY Year
ORDER BY (Carrier, FlightDate)
SETTINGS index_granularity = 8192;
```
بارگیری داده:
``` bash
$ for i in *.zip; do echo $i; unzip -cq $i '*.csv' | sed 's/\.00//g' | clickhouse-client --host=example-perftest01j --query="INSERT INTO ontime FORMAT CSVWithNames"; done
```
## دانلود پارتیشن های تهیه شده {#download-of-prepared-partitions}
``` bash
$ curl -O https://clickhouse-datasets.s3.yandex.net/ontime/partitions/ontime.tar
$ tar xvf ontime.tar -C /var/lib/clickhouse # path to ClickHouse data directory
$ # check permissions of unpacked data, fix if required
$ sudo service clickhouse-server restart
$ clickhouse-client --query "select count(*) from datasets.ontime"
```
!!! info "اطلاعات"
اگر شما نمایش داده شد شرح داده شده در زیر اجرا خواهد شد, شما مجبور به استفاده از نام جدول کامل, `datasets.ontime`.
## نمایش داده شد {#queries}
Q0.
``` sql
SELECT avg(c1)
FROM
(
SELECT Year, Month, count(*) AS c1
FROM ontime
GROUP BY Year, Month
);
```
Q1. تعداد پرواز در روز از سال 2000 تا 2008
``` sql
SELECT DayOfWeek, count(*) AS c
FROM ontime
WHERE Year>=2000 AND Year<=2008
GROUP BY DayOfWeek
ORDER BY c DESC;
```
Q2. تعداد پروازهای تاخیر بیش از 10 دقیقه, گروه بندی شده توسط روز هفته, برای 2000-2008
``` sql
SELECT DayOfWeek, count(*) AS c
FROM ontime
WHERE DepDelay>10 AND Year>=2000 AND Year<=2008
GROUP BY DayOfWeek
ORDER BY c DESC;
```
پرسش 3 تعداد تاخیر در فرودگاه برای 2000-2008
``` sql
SELECT Origin, count(*) AS c
FROM ontime
WHERE DepDelay>10 AND Year>=2000 AND Year<=2008
GROUP BY Origin
ORDER BY c DESC
LIMIT 10;
```
پرسش4. تعداد تاخیر توسط حامل برای 2007
``` sql
SELECT Carrier, count(*)
FROM ontime
WHERE DepDelay>10 AND Year=2007
GROUP BY Carrier
ORDER BY count(*) DESC;
```
پرسش 5 درصد تاخیر توسط حامل برای 2007
``` sql
SELECT Carrier, c, c2, c*100/c2 as c3
FROM
(
SELECT
Carrier,
count(*) AS c
FROM ontime
WHERE DepDelay>10
AND Year=2007
GROUP BY Carrier
)
JOIN
(
SELECT
Carrier,
count(*) AS c2
FROM ontime
WHERE Year=2007
GROUP BY Carrier
) USING Carrier
ORDER BY c3 DESC;
```
نسخه بهتر از پرس و جو همان:
``` sql
SELECT Carrier, avg(DepDelay>10)*100 AS c3
FROM ontime
WHERE Year=2007
GROUP BY Carrier
ORDER BY c3 DESC
```
س6 درخواست قبلی برای طیف وسیع تری از سال 2000-2008
``` sql
SELECT Carrier, c, c2, c*100/c2 as c3
FROM
(
SELECT
Carrier,
count(*) AS c
FROM ontime
WHERE DepDelay>10
AND Year>=2000 AND Year<=2008
GROUP BY Carrier
)
JOIN
(
SELECT
Carrier,
count(*) AS c2
FROM ontime
WHERE Year>=2000 AND Year<=2008
GROUP BY Carrier
) USING Carrier
ORDER BY c3 DESC;
```
نسخه بهتر از پرس و جو همان:
``` sql
SELECT Carrier, avg(DepDelay>10)*100 AS c3
FROM ontime
WHERE Year>=2000 AND Year<=2008
GROUP BY Carrier
ORDER BY c3 DESC;
```
پرسش 7 درصد پرواز به تاخیر افتاد برای بیش از 10 دقیقه, به سال
``` sql
SELECT Year, c1/c2
FROM
(
select
Year,
count(*)*100 as c1
from ontime
WHERE DepDelay>10
GROUP BY Year
)
JOIN
(
select
Year,
count(*) as c2
from ontime
GROUP BY Year
) USING (Year)
ORDER BY Year;
```
نسخه بهتر از پرس و جو همان:
``` sql
SELECT Year, avg(DepDelay>10)*100
FROM ontime
GROUP BY Year
ORDER BY Year;
```
س8 محبوب ترین مقصد توسط تعدادی از شهرستانها به طور مستقیم متصل برای محدوده های مختلف سال
``` sql
SELECT DestCityName, uniqExact(OriginCityName) AS u
FROM ontime
WHERE Year >= 2000 and Year <= 2010
GROUP BY DestCityName
ORDER BY u DESC LIMIT 10;
```
Q9.
``` sql
SELECT Year, count(*) AS c1
FROM ontime
GROUP BY Year;
```
Q10.
``` sql
SELECT
min(Year), max(Year), Carrier, count(*) AS cnt,
sum(ArrDelayMinutes>30) AS flights_delayed,
round(sum(ArrDelayMinutes>30)/count(*),2) AS rate
FROM ontime
WHERE
DayOfWeek NOT IN (6,7) AND OriginState NOT IN ('AK', 'HI', 'PR', 'VI')
AND DestState NOT IN ('AK', 'HI', 'PR', 'VI')
AND FlightDate < '2010-01-01'
GROUP by Carrier
HAVING cnt>100000 and max(Year)>1990
ORDER by rate DESC
LIMIT 1000;
```
پاداش:
``` sql
SELECT avg(cnt)
FROM
(
SELECT Year,Month,count(*) AS cnt
FROM ontime
WHERE DepDel15=1
GROUP BY Year,Month
);
SELECT avg(c1) FROM
(
SELECT Year,Month,count(*) AS c1
FROM ontime
GROUP BY Year,Month
);
SELECT DestCityName, uniqExact(OriginCityName) AS u
FROM ontime
GROUP BY DestCityName
ORDER BY u DESC
LIMIT 10;
SELECT OriginCityName, DestCityName, count() AS c
FROM ontime
GROUP BY OriginCityName, DestCityName
ORDER BY c DESC
LIMIT 10;
SELECT OriginCityName, count() AS c
FROM ontime
GROUP BY OriginCityName
ORDER BY c DESC
LIMIT 10;
```
این تست عملکرد توسط وادیم تکچنکو ایجاد شد. ببینید:
- https://www.percona.com/blog/2009/10/02/analyzing-air-traffic-performance-with-infobright-and-monetdb/
- https://www.percona.com/blog/2009/10/26/air-traffic-queries-in-luciddb/
- https://www.percona.com/blog/2009/11/02/air-traffic-queries-in-infinidb-early-alpha/
- https://www.percona.com/blog/2014/04/21/using-apache-hadoop-and-impala-together-with-mysql-for-data-analysis/
- https://www.percona.com/blog/2016/01/07/apache-spark-with-air-ontime-performance-data/
- http://nickmakos.blogspot.ru/2012/08/analyzing-air-traffic-performance-with.html
[مقاله اصلی](https://clickhouse.tech/docs/en/getting_started/example_datasets/ontime/) <!--hide-->