ClickHouse/dbms/include/DB/Dictionaries/ComplexKeyHashedDictionary.h

566 lines
20 KiB
C++

#pragma once
#include <DB/Dictionaries/IDictionary.h>
#include <DB/Dictionaries/IDictionarySource.h>
#include <DB/Dictionaries/DictionaryStructure.h>
#include <DB/Core/StringRef.h>
#include <DB/Common/HashTable/HashMap.h>
#include <DB/Columns/ColumnString.h>
#include <DB/Common/Arena.h>
#include <ext/range.hpp>
#include <atomic>
#include <memory>
#include <tuple>
namespace DB
{
class ComplexKeyHashedDictionary final : public IDictionaryBase
{
public:
ComplexKeyHashedDictionary(
const std::string & name, const DictionaryStructure & dict_struct, DictionarySourcePtr source_ptr,
const DictionaryLifetime dict_lifetime, bool require_nonempty)
: name{name}, dict_struct(dict_struct), source_ptr{std::move(source_ptr)}, dict_lifetime(dict_lifetime),
require_nonempty(require_nonempty)
{
createAttributes();
try
{
loadData();
calculateBytesAllocated();
}
catch (...)
{
creation_exception = std::current_exception();
}
creation_time = std::chrono::system_clock::now();
}
ComplexKeyHashedDictionary(const ComplexKeyHashedDictionary & other)
: ComplexKeyHashedDictionary{other.name, other.dict_struct, other.source_ptr->clone(), other.dict_lifetime, other.require_nonempty}
{}
std::string getKeyDescription() const { return key_description; };
std::exception_ptr getCreationException() const override { return creation_exception; }
std::string getName() const override { return name; }
std::string getTypeName() const override { return "ComplexKeyHashed"; }
std::size_t getBytesAllocated() const override { return bytes_allocated; }
std::size_t getQueryCount() const override { return query_count.load(std::memory_order_relaxed); }
double getHitRate() const override { return 1.0; }
std::size_t getElementCount() const override { return element_count; }
double getLoadFactor() const override { return static_cast<double>(element_count) / bucket_count; }
bool isCached() const override { return false; }
DictionaryPtr clone() const override { return std::make_unique<ComplexKeyHashedDictionary>(*this); }
const IDictionarySource * getSource() const override { return source_ptr.get(); }
const DictionaryLifetime & getLifetime() const override { return dict_lifetime; }
const DictionaryStructure & getStructure() const override { return dict_struct; }
std::chrono::time_point<std::chrono::system_clock> getCreationTime() const override
{
return creation_time;
}
bool isInjective(const std::string & attribute_name) const override
{
return dict_struct.attributes[&getAttribute(attribute_name) - attributes.data()].injective;
}
#define DECLARE(TYPE)\
void get##TYPE(\
const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types,\
PODArray<TYPE> & out) const\
{\
dict_struct.validateKeyTypes(key_types);\
\
const auto & attribute = getAttribute(attribute_name);\
if (attribute.type != AttributeUnderlyingType::TYPE)\
throw Exception{\
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\
ErrorCodes::TYPE_MISMATCH\
};\
\
const auto null_value = std::get<TYPE>(attribute.null_values);\
\
getItems<TYPE>(attribute, key_columns,\
[&] (const std::size_t row, const auto value) { out[row] = value; },\
[&] (const std::size_t) { return null_value; });\
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void getString(
const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types,
ColumnString * out) const
{
dict_struct.validateKeyTypes(key_types);
const auto & attribute = getAttribute(attribute_name);
if (attribute.type != AttributeUnderlyingType::String)
throw Exception{
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),
ErrorCodes::TYPE_MISMATCH
};
const auto & null_value = StringRef{std::get<String>(attribute.null_values)};
getItems<StringRef>(attribute, key_columns,
[&] (const std::size_t row, const StringRef value) { out->insertData(value.data, value.size); },
[&] (const std::size_t) { return null_value; });
}
#define DECLARE(TYPE)\
void get##TYPE(\
const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types,\
const PODArray<TYPE> & def, PODArray<TYPE> & out) const\
{\
dict_struct.validateKeyTypes(key_types);\
\
const auto & attribute = getAttribute(attribute_name);\
if (attribute.type != AttributeUnderlyingType::TYPE)\
throw Exception{\
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\
ErrorCodes::TYPE_MISMATCH\
};\
\
getItems<TYPE>(attribute, key_columns,\
[&] (const std::size_t row, const auto value) { out[row] = value; },\
[&] (const std::size_t row) { return def[row]; });\
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void getString(
const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types,
const ColumnString * const def, ColumnString * const out) const
{
dict_struct.validateKeyTypes(key_types);
const auto & attribute = getAttribute(attribute_name);
if (attribute.type != AttributeUnderlyingType::String)
throw Exception{
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),
ErrorCodes::TYPE_MISMATCH
};
getItems<StringRef>(attribute, key_columns,
[&] (const std::size_t row, const StringRef value) { out->insertData(value.data, value.size); },
[&] (const std::size_t row) { return def->getDataAt(row); });
}
#define DECLARE(TYPE)\
void get##TYPE(\
const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types,\
const TYPE def, PODArray<TYPE> & out) const\
{\
dict_struct.validateKeyTypes(key_types);\
\
const auto & attribute = getAttribute(attribute_name);\
if (attribute.type != AttributeUnderlyingType::TYPE)\
throw Exception{\
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\
ErrorCodes::TYPE_MISMATCH\
};\
\
getItems<TYPE>(attribute, key_columns,\
[&] (const std::size_t row, const auto value) { out[row] = value; },\
[&] (const std::size_t) { return def; });\
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void getString(
const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types,
const String & def, ColumnString * const out) const
{
dict_struct.validateKeyTypes(key_types);
const auto & attribute = getAttribute(attribute_name);
if (attribute.type != AttributeUnderlyingType::String)
throw Exception{
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),
ErrorCodes::TYPE_MISMATCH
};
getItems<StringRef>(attribute, key_columns,
[&] (const std::size_t row, const StringRef value) { out->insertData(value.data, value.size); },
[&] (const std::size_t) { return StringRef{def}; });
}
void has(const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types, PODArray<UInt8> & out) const
{
dict_struct.validateKeyTypes(key_types);
const auto & attribute = attributes.front();
switch (attribute.type)
{
case AttributeUnderlyingType::UInt8: has<UInt8>(attribute, key_columns, out); break;
case AttributeUnderlyingType::UInt16: has<UInt16>(attribute, key_columns, out); break;
case AttributeUnderlyingType::UInt32: has<UInt32>(attribute, key_columns, out); break;
case AttributeUnderlyingType::UInt64: has<UInt64>(attribute, key_columns, out); break;
case AttributeUnderlyingType::Int8: has<Int8>(attribute, key_columns, out); break;
case AttributeUnderlyingType::Int16: has<Int16>(attribute, key_columns, out); break;
case AttributeUnderlyingType::Int32: has<Int32>(attribute, key_columns, out); break;
case AttributeUnderlyingType::Int64: has<Int64>(attribute, key_columns, out); break;
case AttributeUnderlyingType::Float32: has<Float32>(attribute, key_columns, out); break;
case AttributeUnderlyingType::Float64: has<Float64>(attribute, key_columns, out); break;
case AttributeUnderlyingType::String: has<StringRef>(attribute, key_columns, out); break;
}
}
private:
template <typename Value> using ContainerType = HashMapWithSavedHash<StringRef, Value, StringRefHash>;
template <typename Value> using ContainerPtrType = std::unique_ptr<ContainerType<Value>>;
struct attribute_t final
{
AttributeUnderlyingType type;
std::tuple<
UInt8, UInt16, UInt32, UInt64,
Int8, Int16, Int32, Int64,
Float32, Float64,
String> null_values;
std::tuple<
ContainerPtrType<UInt8>, ContainerPtrType<UInt16>, ContainerPtrType<UInt32>, ContainerPtrType<UInt64>,
ContainerPtrType<Int8>, ContainerPtrType<Int16>, ContainerPtrType<Int32>, ContainerPtrType<Int64>,
ContainerPtrType<Float32>, ContainerPtrType<Float64>,
ContainerPtrType<StringRef>> maps;
std::unique_ptr<Arena> string_arena;
};
void createAttributes()
{
const auto size = dict_struct.attributes.size();
attributes.reserve(size);
for (const auto & attribute : dict_struct.attributes)
{
attribute_index_by_name.emplace(attribute.name, attributes.size());
attributes.push_back(createAttributeWithType(attribute.underlying_type, attribute.null_value));
if (attribute.hierarchical)
throw Exception{
name + ": hierarchical attributes not supported for dictionary of type " + getTypeName(),
ErrorCodes::TYPE_MISMATCH
};
}
}
void loadData()
{
auto stream = source_ptr->loadAll();
stream->readPrefix();
/// created upfront to avoid excess allocations
const auto keys_size = dict_struct.key->size();
StringRefs keys(keys_size);
const auto attributes_size = attributes.size();
while (const auto block = stream->read())
{
const auto rows = block.rowsInFirstColumn();
element_count += rows;
const auto key_column_ptrs = ext::map<ConstColumnPlainPtrs>(ext::range(0, keys_size),
[&] (const std::size_t attribute_idx) {
return block.getByPosition(attribute_idx).column.get();
});
const auto attribute_column_ptrs = ext::map<ConstColumnPlainPtrs>(ext::range(0, attributes_size),
[&] (const std::size_t attribute_idx) {
return block.getByPosition(keys_size + attribute_idx).column.get();
});
for (const auto row_idx : ext::range(0, rows))
{
/// calculate key once per row
const auto key = placeKeysInPool(row_idx, key_column_ptrs, keys, keys_pool);
auto should_rollback = false;
for (const auto attribute_idx : ext::range(0, attributes_size))
{
const auto & attribute_column = *attribute_column_ptrs[attribute_idx];
auto & attribute = attributes[attribute_idx];
const auto inserted = setAttributeValue(attribute, key, attribute_column[row_idx]);
if (!inserted)
should_rollback = true;
}
/// @note on multiple equal keys the mapped value for the first one is stored
if (should_rollback)
keys_pool.rollback(key.size);
}
}
stream->readSuffix();
if (require_nonempty && 0 == element_count)
throw Exception{
name + ": dictionary source is empty and 'require_nonempty' property is set.",
ErrorCodes::DICTIONARY_IS_EMPTY
};
}
template <typename T>
void addAttributeSize(const attribute_t & attribute)
{
const auto & map_ref = std::get<ContainerPtrType<T>>(attribute.maps);
bytes_allocated += sizeof(ContainerType<T>) + map_ref->getBufferSizeInBytes();
bucket_count = map_ref->getBufferSizeInCells();
}
void calculateBytesAllocated()
{
bytes_allocated += attributes.size() * sizeof(attributes.front());
for (const auto & attribute : attributes)
{
switch (attribute.type)
{
case AttributeUnderlyingType::UInt8: addAttributeSize<UInt8>(attribute); break;
case AttributeUnderlyingType::UInt16: addAttributeSize<UInt16>(attribute); break;
case AttributeUnderlyingType::UInt32: addAttributeSize<UInt32>(attribute); break;
case AttributeUnderlyingType::UInt64: addAttributeSize<UInt64>(attribute); break;
case AttributeUnderlyingType::Int8: addAttributeSize<Int8>(attribute); break;
case AttributeUnderlyingType::Int16: addAttributeSize<Int16>(attribute); break;
case AttributeUnderlyingType::Int32: addAttributeSize<Int32>(attribute); break;
case AttributeUnderlyingType::Int64: addAttributeSize<Int64>(attribute); break;
case AttributeUnderlyingType::Float32: addAttributeSize<Float32>(attribute); break;
case AttributeUnderlyingType::Float64: addAttributeSize<Float64>(attribute); break;
case AttributeUnderlyingType::String:
{
addAttributeSize<StringRef>(attribute);
bytes_allocated += sizeof(Arena) + attribute.string_arena->size();
break;
}
}
}
bytes_allocated += keys_pool.size();
}
template <typename T>
void createAttributeImpl(attribute_t & attribute, const Field & null_value)
{
std::get<T>(attribute.null_values) = null_value.get<typename NearestFieldType<T>::Type>();
std::get<ContainerPtrType<T>>(attribute.maps) = std::make_unique<ContainerType<T>>();
}
attribute_t createAttributeWithType(const AttributeUnderlyingType type, const Field & null_value)
{
attribute_t attr{type};
switch (type)
{
case AttributeUnderlyingType::UInt8: createAttributeImpl<UInt8>(attr, null_value); break;
case AttributeUnderlyingType::UInt16: createAttributeImpl<UInt16>(attr, null_value); break;
case AttributeUnderlyingType::UInt32: createAttributeImpl<UInt32>(attr, null_value); break;
case AttributeUnderlyingType::UInt64: createAttributeImpl<UInt64>(attr, null_value); break;
case AttributeUnderlyingType::Int8: createAttributeImpl<Int8>(attr, null_value); break;
case AttributeUnderlyingType::Int16: createAttributeImpl<Int16>(attr, null_value); break;
case AttributeUnderlyingType::Int32: createAttributeImpl<Int32>(attr, null_value); break;
case AttributeUnderlyingType::Int64: createAttributeImpl<Int64>(attr, null_value); break;
case AttributeUnderlyingType::Float32: createAttributeImpl<Float32>(attr, null_value); break;
case AttributeUnderlyingType::Float64: createAttributeImpl<Float64>(attr, null_value); break;
case AttributeUnderlyingType::String:
{
std::get<String>(attr.null_values) = null_value.get<String>();
std::get<ContainerPtrType<StringRef>>(attr.maps) = std::make_unique<ContainerType<StringRef>>();
attr.string_arena = std::make_unique<Arena>();
break;
}
}
return attr;
}
template <typename T, typename ValueSetter, typename DefaultGetter>
void getItems(
const attribute_t & attribute, const ConstColumnPlainPtrs & key_columns, ValueSetter && set_value,
DefaultGetter && get_default) const
{
const auto & attr = *std::get<ContainerPtrType<T>>(attribute.maps);
const auto keys_size = key_columns.size();
StringRefs keys(keys_size);
Arena temporary_keys_pool;
const auto rows = key_columns.front()->size();
for (const auto i : ext::range(0, rows))
{
/// copy key data to arena so it is contiguous and return StringRef to it
const auto key = placeKeysInPool(i, key_columns, keys, temporary_keys_pool);
const auto it = attr.find(key);
set_value(i, it != attr.end() ? it->second : get_default(i));
/// free memory allocated for the key
temporary_keys_pool.rollback(key.size);
}
query_count.fetch_add(rows, std::memory_order_relaxed);
}
template <typename T>
bool setAttributeValueImpl(attribute_t & attribute, const StringRef key, const T value)
{
auto & map = *std::get<ContainerPtrType<T>>(attribute.maps);
const auto pair = map.insert({ key, value });
return pair.second;
}
bool setAttributeValue(attribute_t & attribute, const StringRef key, const Field & value)
{
switch (attribute.type)
{
case AttributeUnderlyingType::UInt8: return setAttributeValueImpl<UInt8>(attribute, key, value.get<UInt64>());
case AttributeUnderlyingType::UInt16: return setAttributeValueImpl<UInt16>(attribute, key, value.get<UInt64>());
case AttributeUnderlyingType::UInt32: return setAttributeValueImpl<UInt32>(attribute, key, value.get<UInt64>());
case AttributeUnderlyingType::UInt64: return setAttributeValueImpl<UInt64>(attribute, key, value.get<UInt64>());
case AttributeUnderlyingType::Int8: return setAttributeValueImpl<Int8>(attribute, key, value.get<Int64>());
case AttributeUnderlyingType::Int16: return setAttributeValueImpl<Int16>(attribute, key, value.get<Int64>());
case AttributeUnderlyingType::Int32: return setAttributeValueImpl<Int32>(attribute, key, value.get<Int64>());
case AttributeUnderlyingType::Int64: return setAttributeValueImpl<Int64>(attribute, key, value.get<Int64>());
case AttributeUnderlyingType::Float32: return setAttributeValueImpl<Float32>(attribute, key, value.get<Float64>());
case AttributeUnderlyingType::Float64: return setAttributeValueImpl<Float64>(attribute, key, value.get<Float64>());
case AttributeUnderlyingType::String:
{
auto & map = *std::get<ContainerPtrType<StringRef>>(attribute.maps);
const auto & string = value.get<String>();
const auto string_in_arena = attribute.string_arena->insert(string.data(), string.size());
const auto pair = map.insert({ key, StringRef{string_in_arena, string.size()} });
return pair.second;
}
}
return {};
}
const attribute_t & getAttribute(const std::string & attribute_name) const
{
const auto it = attribute_index_by_name.find(attribute_name);
if (it == std::end(attribute_index_by_name))
throw Exception{
name + ": no such attribute '" + attribute_name + "'",
ErrorCodes::BAD_ARGUMENTS
};
return attributes[it->second];
}
static StringRef placeKeysInPool(
const std::size_t row, const ConstColumnPlainPtrs & key_columns, StringRefs & keys, Arena & pool)
{
const auto keys_size = key_columns.size();
size_t sum_keys_size{};
for (const auto i : ext::range(0, keys_size))
{
keys[i] = key_columns[i]->getDataAtWithTerminatingZero(row);
sum_keys_size += keys[i].size;
}
const auto res = pool.alloc(sum_keys_size);
auto place = res;
for (size_t j = 0; j < keys_size; ++j)
{
memcpy(place, keys[j].data, keys[j].size);
place += keys[j].size;
}
return { res, sum_keys_size };
}
template <typename T>
void has(const attribute_t & attribute, const ConstColumnPlainPtrs & key_columns, PODArray<UInt8> & out) const
{
const auto & attr = *std::get<ContainerPtrType<T>>(attribute.maps);
const auto keys_size = key_columns.size();
StringRefs keys(keys_size);
Arena temporary_keys_pool;
const auto rows = key_columns.front()->size();
for (const auto i : ext::range(0, rows))
{
/// copy key data to arena so it is contiguous and return StringRef to it
const auto key = placeKeysInPool(i, key_columns, keys, temporary_keys_pool);
const auto it = attr.find(key);
out[i] = it != attr.end();
/// free memory allocated for the key
temporary_keys_pool.rollback(key.size);
}
query_count.fetch_add(rows, std::memory_order_relaxed);
}
const std::string name;
const DictionaryStructure dict_struct;
const DictionarySourcePtr source_ptr;
const DictionaryLifetime dict_lifetime;
const bool require_nonempty;
const std::string key_description{dict_struct.getKeyDescription()};
std::map<std::string, std::size_t> attribute_index_by_name;
std::vector<attribute_t> attributes;
Arena keys_pool;
std::size_t bytes_allocated = 0;
std::size_t element_count = 0;
std::size_t bucket_count = 0;
mutable std::atomic<std::size_t> query_count{0};
std::chrono::time_point<std::chrono::system_clock> creation_time;
std::exception_ptr creation_exception;
};
}