6.6 KiB
machine_translated | machine_translated_rev | toc_priority | toc_title |
---|---|---|---|
true | b111334d66 |
41 | 应用CatBoost模型 |
在ClickHouse中应用Catboost模型
CatBoost 是一个自由和开源的梯度提升库开发 Yandex 用于机器学习。
通过此指令,您将学习如何通过从SQL运行模型推理在ClickHouse中应用预先训练好的模型。
在ClickHouse中应用CatBoost模型:
- 创建表.
- 将数据插入到表中.
- 碌莽禄into拢Integrate010-68520682<url> (可选步骤)。
- 从SQL运行模型推理.
有关训练CatBoost模型的详细信息,请参阅 培训和应用模型.
先决条件
如果你没有 Docker 然而,安装它。
!!! note "注" Docker 是一个软件平台,允许您创建容器,将CatBoost和ClickHouse安装与系统的其余部分隔离。
在应用CatBoost模型之前:
1. 拉 码头窗口映像 从注册表:
$ docker pull yandex/tutorial-catboost-clickhouse
此Docker映像包含运行CatBoost和ClickHouse所需的所有内容:代码、运行时、库、环境变量和配置文件。
2. 确保已成功拉取Docker映像:
$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
yandex/tutorial-catboost-clickhouse latest 622e4d17945b 22 hours ago 1.37GB
3. 基于此映像启动一个Docker容器:
$ docker run -it -p 8888:8888 yandex/tutorial-catboost-clickhouse
1. 创建表
为训练样本创建ClickHouse表:
1. 在交互模式下启动ClickHouse控制台客户端:
$ clickhouse client
!!! note "注" ClickHouse服务器已经在Docker容器内运行。
2. 使用以下命令创建表:
:) CREATE TABLE amazon_train
(
date Date MATERIALIZED today(),
ACTION UInt8,
RESOURCE UInt32,
MGR_ID UInt32,
ROLE_ROLLUP_1 UInt32,
ROLE_ROLLUP_2 UInt32,
ROLE_DEPTNAME UInt32,
ROLE_TITLE UInt32,
ROLE_FAMILY_DESC UInt32,
ROLE_FAMILY UInt32,
ROLE_CODE UInt32
)
ENGINE = MergeTree ORDER BY date
3. 从ClickHouse控制台客户端退出:
:) exit
2. 将数据插入到表中
插入数据:
1. 运行以下命令:
$ clickhouse client --host 127.0.0.1 --query 'INSERT INTO amazon_train FORMAT CSVWithNames' < ~/amazon/train.csv
2. 在交互模式下启动ClickHouse控制台客户端:
$ clickhouse client
3. 确保数据已上传:
:) SELECT count() FROM amazon_train
SELECT count()
FROM amazon_train
+-count()-+
| 65538 |
+-------+
3. 碌莽禄into拢Integrate010-68520682<url>
!!! note "注" 可选步骤。 Docker映像包含运行CatBoost和ClickHouse所需的所有内容。
碌莽禄to拢integrate010-68520682<url>:
1. 构建评估库。
评估CatBoost模型的最快方法是编译 libcatboostmodel.<so|dll|dylib>
图书馆. 有关如何构建库的详细信息,请参阅 CatBoost文件.
2. 例如,在任何地方和任何名称创建一个新目录, data
并将创建的库放入其中。 Docker映像已经包含了库 data/libcatboostmodel.so
.
3. 例如,在任何地方和任何名称为config model创建一个新目录, models
.
4. 创建具有任意名称的模型配置文件,例如, models/amazon_model.xml
.
5. 描述模型配置:
<models>
<model>
<!-- Model type. Now catboost only. -->
<type>catboost</type>
<!-- Model name. -->
<name>amazon</name>
<!-- Path to trained model. -->
<path>/home/catboost/tutorial/catboost_model.bin</path>
<!-- Update interval. -->
<lifetime>0</lifetime>
</model>
</models>
6. 将CatBoost的路径和模型配置添加到ClickHouse配置:
<!-- File etc/clickhouse-server/config.d/models_config.xml. -->
<catboost_dynamic_library_path>/home/catboost/data/libcatboostmodel.so</catboost_dynamic_library_path>
<models_config>/home/catboost/models/*_model.xml</models_config>
4. 从SQL运行模型推理
对于测试模型,运行ClickHouse客户端 $ clickhouse client
.
让我们确保模型正常工作:
:) SELECT
modelEvaluate('amazon',
RESOURCE,
MGR_ID,
ROLE_ROLLUP_1,
ROLE_ROLLUP_2,
ROLE_DEPTNAME,
ROLE_TITLE,
ROLE_FAMILY_DESC,
ROLE_FAMILY,
ROLE_CODE) > 0 AS prediction,
ACTION AS target
FROM amazon_train
LIMIT 10
!!! note "注" 功能 模型值 返回带有多类模型的每类原始预测的元组。
让我们预测一下:
:) SELECT
modelEvaluate('amazon',
RESOURCE,
MGR_ID,
ROLE_ROLLUP_1,
ROLE_ROLLUP_2,
ROLE_DEPTNAME,
ROLE_TITLE,
ROLE_FAMILY_DESC,
ROLE_FAMILY,
ROLE_CODE) AS prediction,
1. / (1 + exp(-prediction)) AS probability,
ACTION AS target
FROM amazon_train
LIMIT 10
!!! note "注" 更多信息 exp() 功能。
让我们计算样本的LogLoss:
:) SELECT -avg(tg * log(prob) + (1 - tg) * log(1 - prob)) AS logloss
FROM
(
SELECT
modelEvaluate('amazon',
RESOURCE,
MGR_ID,
ROLE_ROLLUP_1,
ROLE_ROLLUP_2,
ROLE_DEPTNAME,
ROLE_TITLE,
ROLE_FAMILY_DESC,
ROLE_FAMILY,
ROLE_CODE) AS prediction,
1. / (1. + exp(-prediction)) AS prob,
ACTION AS tg
FROM amazon_train
)