ClickHouse/docs/en/sql-reference/table-functions/gcs.md
Slach a9580644eb add ** wildcard to docs, which available from 22.11
Signed-off-by: Slach <bloodjazman@gmail.com>
2023-08-09 16:30:33 +04:00

185 lines
6.6 KiB
Markdown

---
slug: /en/sql-reference/table-functions/gcs
sidebar_position: 70
sidebar_label: gcs
keywords: [gcs, bucket]
---
# gcs Table Function
Provides a table-like interface to select/insert files in [Google Cloud Storage](https://cloud.google.com/storage/).
**Syntax**
``` sql
gcs(path [,hmac_key, hmac_secret] [,format] [,structure] [,compression])
```
:::tip GCS
The GCS Table Function integrates with Google Cloud Storage by using the GCS XML API and HMAC keys. See the [Google interoperability docs]( https://cloud.google.com/storage/docs/interoperability) for more details about the endpoint and HMAC.
:::
**Arguments**
- `path` — Bucket url with path to file. Supports following wildcards in readonly mode: `*`, `**`, `?`, `{abc,def}` and `{N..M}` where `N`, `M` — numbers, `'abc'`, `'def'` — strings.
:::note GCS
The GCS path is in this format as the endpoint for the Google XML API is different than the JSON API:
```
https://storage.googleapis.com/<bucket>/<folder>/<filename(s)>
```
and not ~~https://storage.cloud.google.com~~.
:::
- `format` — The [format](../../interfaces/formats.md#formats) of the file.
- `structure` — Structure of the table. Format `'column1_name column1_type, column2_name column2_type, ...'`.
- `compression` — Parameter is optional. Supported values: `none`, `gzip/gz`, `brotli/br`, `xz/LZMA`, `zstd/zst`. By default, it will autodetect compression by file extension.
**Returned value**
A table with the specified structure for reading or writing data in the specified file.
**Examples**
Selecting the first two rows from the table from GCS file `https://storage.googleapis.com/my-test-bucket-768/data.csv`:
``` sql
SELECT *
FROM gcs('https://storage.googleapis.com/my-test-bucket-768/data.csv', 'CSV', 'column1 UInt32, column2 UInt32, column3 UInt32')
LIMIT 2;
```
``` text
┌─column1─┬─column2─┬─column3─┐
│ 1 │ 2 │ 3 │
│ 3 │ 2 │ 1 │
└─────────┴─────────┴─────────┘
```
The similar but from file with `gzip` compression:
``` sql
SELECT *
FROM gcs('https://storage.googleapis.com/my-test-bucket-768/data.csv.gz', 'CSV', 'column1 UInt32, column2 UInt32, column3 UInt32', 'gzip')
LIMIT 2;
```
``` text
┌─column1─┬─column2─┬─column3─┐
│ 1 │ 2 │ 3 │
│ 3 │ 2 │ 1 │
└─────────┴─────────┴─────────┘
```
## Usage
Suppose that we have several files with following URIs on GCS:
- 'https://storage.googleapis.com/my-test-bucket-768/some_prefix/some_file_1.csv'
- 'https://storage.googleapis.com/my-test-bucket-768/some_prefix/some_file_2.csv'
- 'https://storage.googleapis.com/my-test-bucket-768/some_prefix/some_file_3.csv'
- 'https://storage.googleapis.com/my-test-bucket-768/some_prefix/some_file_4.csv'
- 'https://storage.googleapis.com/my-test-bucket-768/another_prefix/some_file_1.csv'
- 'https://storage.googleapis.com/my-test-bucket-768/another_prefix/some_file_2.csv'
- 'https://storage.googleapis.com/my-test-bucket-768/another_prefix/some_file_3.csv'
- 'https://storage.googleapis.com/my-test-bucket-768/another_prefix/some_file_4.csv'
Count the amount of rows in files ending with numbers from 1 to 3:
``` sql
SELECT count(*)
FROM gcs('https://storage.googleapis.com/my-test-bucket-768/{some,another}_prefix/some_file_{1..3}.csv', 'CSV', 'name String, value UInt32')
```
``` text
┌─count()─┐
│ 18 │
└─────────┘
```
Count the total amount of rows in all files in these two directories:
``` sql
SELECT count(*)
FROM gcs('https://storage.googleapis.com/my-test-bucket-768/{some,another}_prefix/*', 'CSV', 'name String, value UInt32')
```
``` text
┌─count()─┐
│ 24 │
└─────────┘
```
:::warning
If your listing of files contains number ranges with leading zeros, use the construction with braces for each digit separately or use `?`.
:::
Count the total amount of rows in files named `file-000.csv`, `file-001.csv`, … , `file-999.csv`:
``` sql
SELECT count(*)
FROM gcs('https://storage.googleapis.com/my-test-bucket-768/big_prefix/file-{000..999}.csv', 'CSV', 'name String, value UInt32');
```
``` text
┌─count()─┐
│ 12 │
└─────────┘
```
Insert data into file `test-data.csv.gz`:
``` sql
INSERT INTO FUNCTION gcs('https://storage.googleapis.com/my-test-bucket-768/test-data.csv.gz', 'CSV', 'name String, value UInt32', 'gzip')
VALUES ('test-data', 1), ('test-data-2', 2);
```
Insert data into file `test-data.csv.gz` from existing table:
``` sql
INSERT INTO FUNCTION gcs('https://storage.googleapis.com/my-test-bucket-768/test-data.csv.gz', 'CSV', 'name String, value UInt32', 'gzip')
SELECT name, value FROM existing_table;
```
Glob ** can be used for recursive directory traversal. Consider the below example, it will fetch all files from `my-test-bucket-768` directory recursively:
``` sql
SELECT * FROM gcs('https://storage.googleapis.com/my-test-bucket-768/**', 'CSV', 'name String, value UInt32', 'gzip');
```
The below get data from all `test-data.csv.gz` files from any folder inside `my-test-bucket` directory recursively:
``` sql
SELECT * FROM gcs('https://storage.googleapis.com/my-test-bucket-768/**/test-data.csv.gz', 'CSV', 'name String, value UInt32', 'gzip');
```
## Partitioned Write
If you specify `PARTITION BY` expression when inserting data into `GCS` table, a separate file is created for each partition value. Splitting the data into separate files helps to improve reading operations efficiency.
**Examples**
1. Using partition ID in a key creates separate files:
```sql
INSERT INTO TABLE FUNCTION
gcs('http://bucket.amazonaws.com/my_bucket/file_{_partition_id}.csv', 'CSV', 'a String, b UInt32, c UInt32')
PARTITION BY a VALUES ('x', 2, 3), ('x', 4, 5), ('y', 11, 12), ('y', 13, 14), ('z', 21, 22), ('z', 23, 24);
```
As a result, the data is written into three files: `file_x.csv`, `file_y.csv`, and `file_z.csv`.
2. Using partition ID in a bucket name creates files in different buckets:
```sql
INSERT INTO TABLE FUNCTION
gcs('http://bucket.amazonaws.com/my_bucket_{_partition_id}/file.csv', 'CSV', 'a UInt32, b UInt32, c UInt32')
PARTITION BY a VALUES (1, 2, 3), (1, 4, 5), (10, 11, 12), (10, 13, 14), (20, 21, 22), (20, 23, 24);
```
As a result, the data is written into three files in different buckets: `my_bucket_1/file.csv`, `my_bucket_10/file.csv`, and `my_bucket_20/file.csv`.
**See Also**
- [S3 table function](s3.md)
- [S3 engine](../../engines/table-engines/integrations/s3.md)