mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-16 19:32:07 +00:00
4088c0a7f3
Automated register all functions with below naming convention by iterating through the symbols: void DB::registerXXX(DB::FunctionFactory &)
292 lines
11 KiB
C++
292 lines
11 KiB
C++
#include <cfloat>
|
|
#include <cmath>
|
|
|
|
#include <boost/math/distributions/normal.hpp>
|
|
|
|
#include <DataTypes/DataTypeTuple.h>
|
|
#include <DataTypes/DataTypesDecimal.h>
|
|
#include <DataTypes/DataTypesNumber.h>
|
|
#include <Columns/ColumnTuple.h>
|
|
#include <Columns/ColumnsNumber.h>
|
|
#include <Functions/FunctionFactory.h>
|
|
#include <Functions/FunctionHelpers.h>
|
|
#include <Functions/IFunction.h>
|
|
#include <Functions/castTypeToEither.h>
|
|
#include <Interpreters/castColumn.h>
|
|
|
|
|
|
namespace DB
|
|
{
|
|
|
|
namespace ErrorCodes
|
|
{
|
|
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
|
|
}
|
|
|
|
template <typename Impl>
|
|
class FunctionMinSampleSize : public IFunction
|
|
{
|
|
public:
|
|
static constexpr auto name = Impl::name;
|
|
|
|
static FunctionPtr create(ContextPtr) { return std::make_shared<FunctionMinSampleSize<Impl>>(); }
|
|
|
|
String getName() const override { return name; }
|
|
|
|
size_t getNumberOfArguments() const override { return Impl::num_args; }
|
|
ColumnNumbers getArgumentsThatAreAlwaysConstant() const override
|
|
{
|
|
return ColumnNumbers(std::begin(Impl::const_args), std::end(Impl::const_args));
|
|
}
|
|
|
|
bool useDefaultImplementationForNulls() const override { return false; }
|
|
bool useDefaultImplementationForConstants() const override { return true; }
|
|
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return false; }
|
|
|
|
static DataTypePtr getReturnType()
|
|
{
|
|
auto float_64_type = std::make_shared<DataTypeNumber<Float64>>();
|
|
|
|
DataTypes types{
|
|
float_64_type,
|
|
float_64_type,
|
|
float_64_type,
|
|
};
|
|
|
|
Strings names{
|
|
"minimum_sample_size",
|
|
"detect_range_lower",
|
|
"detect_range_upper",
|
|
};
|
|
|
|
return std::make_shared<DataTypeTuple>(std::move(types), std::move(names));
|
|
}
|
|
|
|
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
|
|
{
|
|
Impl::validateArguments(arguments);
|
|
return getReturnType();
|
|
}
|
|
|
|
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override
|
|
{
|
|
return Impl::execute(arguments, input_rows_count);
|
|
}
|
|
};
|
|
|
|
static bool isBetweenZeroAndOne(Float64 v)
|
|
{
|
|
return v >= 0.0 && v <= 1.0 && fabs(v - 0.0) >= DBL_EPSILON && fabs(v - 1.0) >= DBL_EPSILON;
|
|
}
|
|
|
|
struct ContinousImpl
|
|
{
|
|
static constexpr auto name = "minSampleSizeContinous";
|
|
static constexpr size_t num_args = 5;
|
|
static constexpr size_t const_args[] = {2, 3, 4};
|
|
|
|
static void validateArguments(const DataTypes & arguments)
|
|
{
|
|
for (size_t i = 0; i < arguments.size(); ++i)
|
|
{
|
|
if (!isNativeNumber(arguments[i]))
|
|
{
|
|
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "The {}th Argument of function {} must be a number.", i + 1, name);
|
|
}
|
|
}
|
|
}
|
|
|
|
static ColumnPtr execute(const ColumnsWithTypeAndName & arguments, size_t input_rows_count)
|
|
{
|
|
auto float_64_type = std::make_shared<DataTypeFloat64>();
|
|
auto baseline_argument = arguments[0];
|
|
baseline_argument.column = baseline_argument.column->convertToFullColumnIfConst();
|
|
auto baseline_column_untyped = castColumnAccurate(baseline_argument, float_64_type);
|
|
const auto * baseline_column = checkAndGetColumn<ColumnVector<Float64>>(*baseline_column_untyped);
|
|
const auto & baseline_column_data = baseline_column->getData();
|
|
|
|
auto sigma_argument = arguments[1];
|
|
sigma_argument.column = sigma_argument.column->convertToFullColumnIfConst();
|
|
auto sigma_column_untyped = castColumnAccurate(sigma_argument, float_64_type);
|
|
const auto * sigma_column = checkAndGetColumn<ColumnVector<Float64>>(*sigma_column_untyped);
|
|
const auto & sigma_column_data = sigma_column->getData();
|
|
|
|
const IColumn & col_mde = *arguments[2].column;
|
|
const IColumn & col_power = *arguments[3].column;
|
|
const IColumn & col_alpha = *arguments[4].column;
|
|
|
|
auto res_min_sample_size = ColumnFloat64::create();
|
|
auto & data_min_sample_size = res_min_sample_size->getData();
|
|
data_min_sample_size.reserve(input_rows_count);
|
|
|
|
auto res_detect_lower = ColumnFloat64::create();
|
|
auto & data_detect_lower = res_detect_lower->getData();
|
|
data_detect_lower.reserve(input_rows_count);
|
|
|
|
auto res_detect_upper = ColumnFloat64::create();
|
|
auto & data_detect_upper = res_detect_upper->getData();
|
|
data_detect_upper.reserve(input_rows_count);
|
|
|
|
/// Minimal Detectable Effect
|
|
const Float64 mde = col_mde.getFloat64(0);
|
|
/// Sufficient statistical power to detect a treatment effect
|
|
const Float64 power = col_power.getFloat64(0);
|
|
/// Significance level
|
|
const Float64 alpha = col_alpha.getFloat64(0);
|
|
|
|
boost::math::normal_distribution<> nd(0.0, 1.0);
|
|
|
|
for (size_t row_num = 0; row_num < input_rows_count; ++row_num)
|
|
{
|
|
/// Mean of control-metric
|
|
Float64 baseline = baseline_column_data[row_num];
|
|
/// Standard deviation of conrol-metric
|
|
Float64 sigma = sigma_column_data[row_num];
|
|
|
|
if (!std::isfinite(baseline) || !std::isfinite(sigma) || !isBetweenZeroAndOne(mde) || !isBetweenZeroAndOne(power)
|
|
|| !isBetweenZeroAndOne(alpha))
|
|
{
|
|
data_min_sample_size.emplace_back(std::numeric_limits<Float64>::quiet_NaN());
|
|
data_detect_lower.emplace_back(std::numeric_limits<Float64>::quiet_NaN());
|
|
data_detect_upper.emplace_back(std::numeric_limits<Float64>::quiet_NaN());
|
|
continue;
|
|
}
|
|
|
|
Float64 delta = baseline * mde;
|
|
|
|
using namespace boost::math;
|
|
/// https://towardsdatascience.com/required-sample-size-for-a-b-testing-6f6608dd330a
|
|
/// \frac{2\sigma^{2} * (Z_{1 - alpha /2} + Z_{power})^{2}}{\Delta^{2}}
|
|
Float64 min_sample_size
|
|
= 2 * std::pow(sigma, 2) * std::pow(quantile(nd, 1.0 - alpha / 2) + quantile(nd, power), 2) / std::pow(delta, 2);
|
|
|
|
data_min_sample_size.emplace_back(min_sample_size);
|
|
data_detect_lower.emplace_back(baseline - delta);
|
|
data_detect_upper.emplace_back(baseline + delta);
|
|
}
|
|
|
|
return ColumnTuple::create(Columns{std::move(res_min_sample_size), std::move(res_detect_lower), std::move(res_detect_upper)});
|
|
}
|
|
};
|
|
|
|
|
|
struct ConversionImpl
|
|
{
|
|
static constexpr auto name = "minSampleSizeConversion";
|
|
static constexpr size_t num_args = 4;
|
|
static constexpr size_t const_args[] = {1, 2, 3};
|
|
|
|
static void validateArguments(const DataTypes & arguments)
|
|
{
|
|
size_t arguments_size = arguments.size();
|
|
for (size_t i = 0; i < arguments_size; ++i)
|
|
{
|
|
if (!isFloat(arguments[i]))
|
|
{
|
|
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "The {}th argument of function {} must be a float.", i + 1, name);
|
|
}
|
|
}
|
|
}
|
|
|
|
static ColumnPtr execute(const ColumnsWithTypeAndName & arguments, size_t input_rows_count)
|
|
{
|
|
auto first_argument_column = castColumnAccurate(arguments[0], std::make_shared<DataTypeFloat64>());
|
|
|
|
if (const ColumnConst * const col_p1_const = checkAndGetColumnConst<ColumnVector<Float64>>(first_argument_column.get()))
|
|
{
|
|
const Float64 left_value = col_p1_const->template getValue<Float64>();
|
|
return process<true>(arguments, &left_value, input_rows_count);
|
|
}
|
|
else if (const ColumnVector<Float64> * const col_p1 = checkAndGetColumn<ColumnVector<Float64>>(first_argument_column.get()))
|
|
{
|
|
return process<false>(arguments, col_p1->getData().data(), input_rows_count);
|
|
}
|
|
else
|
|
{
|
|
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "The first argument of function {} must be a float.", name);
|
|
}
|
|
}
|
|
|
|
template <bool const_p1>
|
|
static ColumnPtr process(const ColumnsWithTypeAndName & arguments, const Float64 * col_p1, const size_t input_rows_count)
|
|
{
|
|
const IColumn & col_mde = *arguments[1].column;
|
|
const IColumn & col_power = *arguments[2].column;
|
|
const IColumn & col_alpha = *arguments[3].column;
|
|
|
|
auto res_min_sample_size = ColumnFloat64::create();
|
|
auto & data_min_sample_size = res_min_sample_size->getData();
|
|
data_min_sample_size.reserve(input_rows_count);
|
|
|
|
auto res_detect_lower = ColumnFloat64::create();
|
|
auto & data_detect_lower = res_detect_lower->getData();
|
|
data_detect_lower.reserve(input_rows_count);
|
|
|
|
auto res_detect_upper = ColumnFloat64::create();
|
|
auto & data_detect_upper = res_detect_upper->getData();
|
|
data_detect_upper.reserve(input_rows_count);
|
|
|
|
/// Minimal Detectable Effect
|
|
const Float64 mde = col_mde.getFloat64(0);
|
|
/// Sufficient statistical power to detect a treatment effect
|
|
const Float64 power = col_power.getFloat64(0);
|
|
/// Significance level
|
|
const Float64 alpha = col_alpha.getFloat64(0);
|
|
|
|
boost::math::normal_distribution<> nd(0.0, 1.0);
|
|
|
|
for (size_t row_num = 0; row_num < input_rows_count; ++row_num)
|
|
{
|
|
/// Proportion of control-metric
|
|
Float64 p1;
|
|
|
|
if constexpr (const_p1)
|
|
{
|
|
p1 = col_p1[0];
|
|
}
|
|
else if constexpr (!const_p1)
|
|
{
|
|
p1 = col_p1[row_num];
|
|
}
|
|
|
|
if (!std::isfinite(p1) || !isBetweenZeroAndOne(mde) || !isBetweenZeroAndOne(power) || !isBetweenZeroAndOne(alpha))
|
|
{
|
|
data_min_sample_size.emplace_back(std::numeric_limits<Float64>::quiet_NaN());
|
|
data_detect_lower.emplace_back(std::numeric_limits<Float64>::quiet_NaN());
|
|
data_detect_upper.emplace_back(std::numeric_limits<Float64>::quiet_NaN());
|
|
continue;
|
|
}
|
|
|
|
Float64 q1 = 1.0 - p1;
|
|
Float64 p2 = p1 + mde;
|
|
Float64 q2 = 1.0 - p2;
|
|
Float64 p_bar = (p1 + p2) / 2.0;
|
|
Float64 q_bar = 1.0 - p_bar;
|
|
|
|
using namespace boost::math;
|
|
/// https://towardsdatascience.com/required-sample-size-for-a-b-testing-6f6608dd330a
|
|
/// \frac{(Z_{1-alpha/2} * \sqrt{2*\bar{p}*\bar{q}} + Z_{power} * \sqrt{p1*q1+p2*q2})^{2}}{\Delta^{2}}
|
|
Float64 min_sample_size
|
|
= std::pow(
|
|
quantile(nd, 1.0 - alpha / 2.0) * std::sqrt(2.0 * p_bar * q_bar) + quantile(nd, power) * std::sqrt(p1 * q1 + p2 * q2),
|
|
2)
|
|
/ std::pow(mde, 2);
|
|
|
|
data_min_sample_size.emplace_back(min_sample_size);
|
|
data_detect_lower.emplace_back(p1 - mde);
|
|
data_detect_upper.emplace_back(p1 + mde);
|
|
}
|
|
|
|
return ColumnTuple::create(Columns{std::move(res_min_sample_size), std::move(res_detect_lower), std::move(res_detect_upper)});
|
|
}
|
|
};
|
|
|
|
|
|
REGISTER_FUNCTION(MinSampleSize)
|
|
{
|
|
factory.registerFunction<FunctionMinSampleSize<ContinousImpl>>();
|
|
factory.registerFunction<FunctionMinSampleSize<ConversionImpl>>();
|
|
}
|
|
|
|
}
|