mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-14 02:12:21 +00:00
325 lines
17 KiB
Markdown
325 lines
17 KiB
Markdown
---
|
|
toc_priority: 21
|
|
toc_title: Menus
|
|
---
|
|
|
|
# New York Public Library "What's on the Menu?" Dataset
|
|
|
|
The dataset is created by the New York Public Library. It contains historical data on the menus of hotels, restaurants and cafes with the dishes along with their prices.
|
|
|
|
Source: http://menus.nypl.org/data
|
|
The data is in public domain.
|
|
|
|
The data is from library's archive and it may be incomplete and difficult for statistical analysis. Nevertheless it is also very yummy.
|
|
The size is just 1.3 million records about dishes in the menus (a very small data volume for ClickHouse, but it's still a good example).
|
|
|
|
## Download the Dataset
|
|
|
|
```
|
|
wget https://s3.amazonaws.com/menusdata.nypl.org/gzips/2021_08_01_07_01_17_data.tgz
|
|
```
|
|
|
|
Replace the link to the up to date link from http://menus.nypl.org/data if needed.
|
|
Download size is about 35 MB.
|
|
|
|
## Unpack the Dataset
|
|
|
|
```
|
|
tar xvf 2021_08_01_07_01_17_data.tgz
|
|
```
|
|
|
|
Uncompressed size is about 150 MB.
|
|
|
|
The data is normalized consisted of four tables:
|
|
- Menu: information about menus: the name of the restaurant, the date when menu was seen, etc;
|
|
- Dish: information about dishes: the name of the dish along with some characteristic;
|
|
- MenuPage: information about the pages in the menus; every page belongs to some menu;
|
|
- MenuItem: an item of the menu - a dish along with its price on some menu page: links to dish and menu page.
|
|
|
|
## Create the Tables
|
|
|
|
```
|
|
CREATE TABLE dish
|
|
(
|
|
id UInt32,
|
|
name String,
|
|
description String,
|
|
menus_appeared UInt32,
|
|
times_appeared Int32,
|
|
first_appeared UInt16,
|
|
last_appeared UInt16,
|
|
lowest_price Decimal64(3),
|
|
highest_price Decimal64(3)
|
|
) ENGINE = MergeTree ORDER BY id;
|
|
|
|
CREATE TABLE menu
|
|
(
|
|
id UInt32,
|
|
name String,
|
|
sponsor String,
|
|
event String,
|
|
venue String,
|
|
place String,
|
|
physical_description String,
|
|
occasion String,
|
|
notes String,
|
|
call_number String,
|
|
keywords String,
|
|
language String,
|
|
date String,
|
|
location String,
|
|
location_type String,
|
|
currency String,
|
|
currency_symbol String,
|
|
status String,
|
|
page_count UInt16,
|
|
dish_count UInt16
|
|
) ENGINE = MergeTree ORDER BY id;
|
|
|
|
CREATE TABLE menu_page
|
|
(
|
|
id UInt32,
|
|
menu_id UInt32,
|
|
page_number UInt16,
|
|
image_id String,
|
|
full_height UInt16,
|
|
full_width UInt16,
|
|
uuid UUID
|
|
) ENGINE = MergeTree ORDER BY id;
|
|
|
|
CREATE TABLE menu_item
|
|
(
|
|
id UInt32,
|
|
menu_page_id UInt32,
|
|
price Decimal64(3),
|
|
high_price Decimal64(3),
|
|
dish_id UInt32,
|
|
created_at DateTime,
|
|
updated_at DateTime,
|
|
xpos Float64,
|
|
ypos Float64
|
|
) ENGINE = MergeTree ORDER BY id;
|
|
```
|
|
|
|
We use `Decimal` data type to store prices. Everything else is quite straightforward.
|
|
|
|
## Import Data
|
|
|
|
Upload data into ClickHouse:
|
|
|
|
```
|
|
clickhouse-client --format_csv_allow_single_quotes 0 --input_format_null_as_default 0 --query "INSERT INTO dish FORMAT CSVWithNames" < Dish.csv
|
|
clickhouse-client --format_csv_allow_single_quotes 0 --input_format_null_as_default 0 --query "INSERT INTO menu FORMAT CSVWithNames" < Menu.csv
|
|
clickhouse-client --format_csv_allow_single_quotes 0 --input_format_null_as_default 0 --query "INSERT INTO menu_page FORMAT CSVWithNames" < MenuPage.csv
|
|
clickhouse-client --format_csv_allow_single_quotes 0 --input_format_null_as_default 0 --date_time_input_format best_effort --query "INSERT INTO menu_item FORMAT CSVWithNames" < MenuItem.csv
|
|
```
|
|
|
|
We use `CSVWithNames` format as the data is represented by CSV with header.
|
|
|
|
We disable `format_csv_allow_single_quotes` as only double quotes are used for data fields and single quotes can be inside the values and should not confuse the CSV parser.
|
|
|
|
We disable `input_format_null_as_default` as our data does not have NULLs. Otherwise ClickHouse will try to parse `\N` sequences and can be confused with `\` in data.
|
|
|
|
The setting `--date_time_input_format best_effort` allows to parse `DateTime` fields in wide variety of formats. For example, ISO-8601 without seconds like '2000-01-01 01:02' will be recognized. Without this setting only fixed DateTime format is allowed.
|
|
|
|
## Denormalize the Data
|
|
|
|
Data is presented in multiple tables in normalized form. It means you have to perform JOINs if you want to query, e.g. dish names from menu items.
|
|
For typical analytical tasks it is way more efficient to deal with pre-JOINed data to avoid doing JOIN every time. It is called "denormalized" data.
|
|
|
|
We will create a table that will contain all the data JOINed together:
|
|
|
|
```
|
|
CREATE TABLE menu_item_denorm
|
|
ENGINE = MergeTree ORDER BY (dish_name, created_at)
|
|
AS SELECT
|
|
price,
|
|
high_price,
|
|
created_at,
|
|
updated_at,
|
|
xpos,
|
|
ypos,
|
|
dish.id AS dish_id,
|
|
dish.name AS dish_name,
|
|
dish.description AS dish_description,
|
|
dish.menus_appeared AS dish_menus_appeared,
|
|
dish.times_appeared AS dish_times_appeared,
|
|
dish.first_appeared AS dish_first_appeared,
|
|
dish.last_appeared AS dish_last_appeared,
|
|
dish.lowest_price AS dish_lowest_price,
|
|
dish.highest_price AS dish_highest_price,
|
|
menu.id AS menu_id,
|
|
menu.name AS menu_name,
|
|
menu.sponsor AS menu_sponsor,
|
|
menu.event AS menu_event,
|
|
menu.venue AS menu_venue,
|
|
menu.place AS menu_place,
|
|
menu.physical_description AS menu_physical_description,
|
|
menu.occasion AS menu_occasion,
|
|
menu.notes AS menu_notes,
|
|
menu.call_number AS menu_call_number,
|
|
menu.keywords AS menu_keywords,
|
|
menu.language AS menu_language,
|
|
menu.date AS menu_date,
|
|
menu.location AS menu_location,
|
|
menu.location_type AS menu_location_type,
|
|
menu.currency AS menu_currency,
|
|
menu.currency_symbol AS menu_currency_symbol,
|
|
menu.status AS menu_status,
|
|
menu.page_count AS menu_page_count,
|
|
menu.dish_count AS menu_dish_count
|
|
FROM menu_item
|
|
JOIN dish ON menu_item.dish_id = dish.id
|
|
JOIN menu_page ON menu_item.menu_page_id = menu_page.id
|
|
JOIN menu ON menu_page.menu_id = menu.id
|
|
```
|
|
|
|
## Validate the Data
|
|
|
|
```
|
|
SELECT count() FROM menu_item_denorm
|
|
1329175
|
|
```
|
|
|
|
## Run Some Queries
|
|
|
|
Averaged historical prices of dishes:
|
|
|
|
```
|
|
SELECT
|
|
round(toUInt32OrZero(extract(menu_date, '^\\d{4}')), -1) AS d,
|
|
count(),
|
|
round(avg(price), 2),
|
|
bar(avg(price), 0, 100, 100)
|
|
FROM menu_item_denorm
|
|
WHERE (menu_currency = 'Dollars') AND (d > 0) AND (d < 2022)
|
|
GROUP BY d
|
|
ORDER BY d ASC
|
|
|
|
┌────d─┬─count()─┬─round(avg(price), 2)─┬─bar(avg(price), 0, 100, 100)─┐
|
|
│ 1850 │ 618 │ 1.5 │ █▍ │
|
|
│ 1860 │ 1634 │ 1.29 │ █▎ │
|
|
│ 1870 │ 2215 │ 1.36 │ █▎ │
|
|
│ 1880 │ 3909 │ 1.01 │ █ │
|
|
│ 1890 │ 8837 │ 1.4 │ █▍ │
|
|
│ 1900 │ 176292 │ 0.68 │ ▋ │
|
|
│ 1910 │ 212196 │ 0.88 │ ▊ │
|
|
│ 1920 │ 179590 │ 0.74 │ ▋ │
|
|
│ 1930 │ 73707 │ 0.6 │ ▌ │
|
|
│ 1940 │ 58795 │ 0.57 │ ▌ │
|
|
│ 1950 │ 41407 │ 0.95 │ ▊ │
|
|
│ 1960 │ 51179 │ 1.32 │ █▎ │
|
|
│ 1970 │ 12914 │ 1.86 │ █▋ │
|
|
│ 1980 │ 7268 │ 4.35 │ ████▎ │
|
|
│ 1990 │ 11055 │ 6.03 │ ██████ │
|
|
│ 2000 │ 2467 │ 11.85 │ ███████████▋ │
|
|
│ 2010 │ 597 │ 25.66 │ █████████████████████████▋ │
|
|
└──────┴─────────┴──────────────────────┴──────────────────────────────┘
|
|
|
|
17 rows in set. Elapsed: 0.044 sec. Processed 1.33 million rows, 54.62 MB (30.00 million rows/s., 1.23 GB/s.)
|
|
```
|
|
|
|
Take it with a grain of salt.
|
|
|
|
### Burger Prices:
|
|
|
|
```
|
|
SELECT
|
|
round(toUInt32OrZero(extract(menu_date, '^\\d{4}')), -1) AS d,
|
|
count(),
|
|
round(avg(price), 2),
|
|
bar(avg(price), 0, 50, 100)
|
|
FROM menu_item_denorm
|
|
WHERE (menu_currency = 'Dollars') AND (d > 0) AND (d < 2022) AND (dish_name ILIKE '%burger%')
|
|
GROUP BY d
|
|
ORDER BY d ASC
|
|
|
|
┌────d─┬─count()─┬─round(avg(price), 2)─┬─bar(avg(price), 0, 50, 100)───────────┐
|
|
│ 1880 │ 2 │ 0.42 │ ▋ │
|
|
│ 1890 │ 7 │ 0.85 │ █▋ │
|
|
│ 1900 │ 399 │ 0.49 │ ▊ │
|
|
│ 1910 │ 589 │ 0.68 │ █▎ │
|
|
│ 1920 │ 280 │ 0.56 │ █ │
|
|
│ 1930 │ 74 │ 0.42 │ ▋ │
|
|
│ 1940 │ 119 │ 0.59 │ █▏ │
|
|
│ 1950 │ 134 │ 1.09 │ ██▏ │
|
|
│ 1960 │ 272 │ 0.92 │ █▋ │
|
|
│ 1970 │ 108 │ 1.18 │ ██▎ │
|
|
│ 1980 │ 88 │ 2.82 │ █████▋ │
|
|
│ 1990 │ 184 │ 3.68 │ ███████▎ │
|
|
│ 2000 │ 21 │ 7.14 │ ██████████████▎ │
|
|
│ 2010 │ 6 │ 18.42 │ ████████████████████████████████████▋ │
|
|
└──────┴─────────┴──────────────────────┴───────────────────────────────────────┘
|
|
|
|
14 rows in set. Elapsed: 0.052 sec. Processed 1.33 million rows, 94.15 MB (25.48 million rows/s., 1.80 GB/s.)
|
|
```
|
|
|
|
### Vodka:
|
|
|
|
```
|
|
SELECT
|
|
round(toUInt32OrZero(extract(menu_date, '^\\d{4}')), -1) AS d,
|
|
count(),
|
|
round(avg(price), 2),
|
|
bar(avg(price), 0, 50, 100)
|
|
FROM menu_item_denorm
|
|
WHERE (menu_currency IN ('Dollars', '')) AND (d > 0) AND (d < 2022) AND (dish_name ILIKE '%vodka%')
|
|
GROUP BY d
|
|
ORDER BY d ASC
|
|
|
|
┌────d─┬─count()─┬─round(avg(price), 2)─┬─bar(avg(price), 0, 50, 100)─┐
|
|
│ 1910 │ 2 │ 0 │ │
|
|
│ 1920 │ 1 │ 0.3 │ ▌ │
|
|
│ 1940 │ 21 │ 0.42 │ ▋ │
|
|
│ 1950 │ 14 │ 0.59 │ █▏ │
|
|
│ 1960 │ 113 │ 2.17 │ ████▎ │
|
|
│ 1970 │ 37 │ 0.68 │ █▎ │
|
|
│ 1980 │ 19 │ 2.55 │ █████ │
|
|
│ 1990 │ 86 │ 3.6 │ ███████▏ │
|
|
│ 2000 │ 2 │ 3.98 │ ███████▊ │
|
|
└──────┴─────────┴──────────────────────┴─────────────────────────────┘
|
|
```
|
|
|
|
To get vodka we have to write `ILIKE '%vodka%'` and this definitely makes a statement.
|
|
|
|
### Caviar:
|
|
|
|
Let's print caviar prices. Also let's print a name of any dish with caviar.
|
|
|
|
```
|
|
SELECT
|
|
round(toUInt32OrZero(extract(menu_date, '^\\d{4}')), -1) AS d,
|
|
count(),
|
|
round(avg(price), 2),
|
|
bar(avg(price), 0, 50, 100),
|
|
any(dish_name)
|
|
FROM menu_item_denorm
|
|
WHERE (menu_currency IN ('Dollars', '')) AND (d > 0) AND (d < 2022) AND (dish_name ILIKE '%caviar%')
|
|
GROUP BY d
|
|
ORDER BY d ASC
|
|
|
|
┌────d─┬─count()─┬─round(avg(price), 2)─┬─bar(avg(price), 0, 50, 100)──────┬─any(dish_name)──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
|
|
│ 1090 │ 1 │ 0 │ │ Caviar │
|
|
│ 1880 │ 3 │ 0 │ │ Caviar │
|
|
│ 1890 │ 39 │ 0.59 │ █▏ │ Butter and caviar │
|
|
│ 1900 │ 1014 │ 0.34 │ ▋ │ Anchovy Caviar on Toast │
|
|
│ 1910 │ 1588 │ 1.35 │ ██▋ │ 1/1 Brötchen Caviar │
|
|
│ 1920 │ 927 │ 1.37 │ ██▋ │ ASTRAKAN CAVIAR │
|
|
│ 1930 │ 289 │ 1.91 │ ███▋ │ Astrachan caviar │
|
|
│ 1940 │ 201 │ 0.83 │ █▋ │ (SPECIAL) Domestic Caviar Sandwich │
|
|
│ 1950 │ 81 │ 2.27 │ ████▌ │ Beluga Caviar │
|
|
│ 1960 │ 126 │ 2.21 │ ████▍ │ Beluga Caviar │
|
|
│ 1970 │ 105 │ 0.95 │ █▊ │ BELUGA MALOSSOL CAVIAR AMERICAN DRESSING │
|
|
│ 1980 │ 12 │ 7.22 │ ██████████████▍ │ Authentic Iranian Beluga Caviar the world's finest black caviar presented in ice garni and a sampling of chilled 100° Russian vodka │
|
|
│ 1990 │ 74 │ 14.42 │ ████████████████████████████▋ │ Avocado Salad, Fresh cut avocado with caviare │
|
|
│ 2000 │ 3 │ 7.82 │ ███████████████▋ │ Aufgeschlagenes Kartoffelsueppchen mit Forellencaviar │
|
|
│ 2010 │ 6 │ 15.58 │ ███████████████████████████████▏ │ "OYSTERS AND PEARLS" "Sabayon" of Pearl Tapioca with Island Creek Oysters and Russian Sevruga Caviar │
|
|
└──────┴─────────┴──────────────────────┴──────────────────────────────────┴─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
|
|
```
|
|
|
|
At least they have caviar with vodka. Very nice.
|
|
|
|
### Test it in Playground
|
|
|
|
The data is uploaded to ClickHouse Playground, [example](https://gh-api.clickhouse.tech/play?user=play#U0VMRUNUCiAgICByb3VuZCh0b1VJbnQzMk9yWmVybyhleHRyYWN0KG1lbnVfZGF0ZSwgJ15cXGR7NH0nKSksIC0xKSBBUyBkLAogICAgY291bnQoKSwKICAgIHJvdW5kKGF2ZyhwcmljZSksIDIpLAogICAgYmFyKGF2ZyhwcmljZSksIDAsIDUwLCAxMDApLAogICAgYW55KGRpc2hfbmFtZSkKRlJPTSBtZW51X2l0ZW1fZGVub3JtCldIRVJFIChtZW51X2N1cnJlbmN5IElOICgnRG9sbGFycycsICcnKSkgQU5EIChkID4gMCkgQU5EIChkIDwgMjAyMikgQU5EIChkaXNoX25hbWUgSUxJS0UgJyVjYXZpYXIlJykKR1JPVVAgQlkgZApPUkRFUiBCWSBkIEFTQw==).
|