12 KiB
slug | sidebar_position | sidebar_label |
---|---|---|
/en/operations/utilities/clickhouse-local | 60 | clickhouse-local |
clickhouse-local
Related Content
When to use clickhouse-local vs. ClickHouse
clickhouse-local
is an easy-to-use version of ClickHouse that is ideal for developers who need to perform fast processing on local and remote files using SQL without having to install a full database server. With clickhouse-local
, developers can use SQL commands (using the ClickHouse SQL dialect) directly from the command line, providing a simple and efficient way to access ClickHouse features without the need for a full ClickHouse installation. One of the main benefits of clickhouse-local
is that it is already included when installing clickhouse-client. This means that developers can get started with clickhouse-local
quickly, without the need for a complex installation process.
While clickhouse-local
is a great tool for development and testing purposes, and for processing files, it is not suitable for serving end users or applications. In these scenarios, it is recommended to use the open-source ClickHouse. ClickHouse is a powerful OLAP database that is designed to handle large-scale analytical workloads. It provides fast and efficient processing of complex queries on large datasets, making it ideal for use in production environments where high-performance is critical. Additionally, ClickHouse offers a wide range of features such as replication, sharding, and high availability, which are essential for scaling up to handle large datasets and serving applications. If you need to handle larger datasets or serve end users or applications, we recommend using open-source ClickHouse instead of clickhouse-local
.
Please read the docs below that show example use cases for clickhouse-local
, such as querying local CSVs or reading a parquet file in S3.
Download clickhouse-local
clickhouse-local
is executed using the same clickhouse
binary that runs the ClickHouse server and clickhouse-client
. The easiest way to download the latest version is with the following command:
curl https://clickhouse.com/ | sh
:::note The binary you just downloaded can run all sorts of ClickHouse tools and utilities. If you want to run ClickHouse as a database server, check out the Quick Start. :::
Query data in a CSV file using SQL
A common use of clickhouse-local
is to run ad-hoc queries on files: where you don't have to insert the data into a table. clickhouse-local
can stream the data from a file into a temporary table and execute your SQL.
If the file is sitting on the same machine as clickhouse-local
, you can simple specify the file to load. The following reviews.tsv
file contains a sampling of Amazon product reviews:
./clickhouse local -q "SELECT * FROM 'reviews.tsv'"
This command is a shortcut of:
./clickhouse local -q "SELECT * FROM file('reviews.tsv')"
ClickHouse knows the file uses a tab-separated format from filename extension. If you need to explicitly specify the format, simply add one of the many ClickHouse input formats:
./clickhouse local -q "SELECT * FROM file('reviews.tsv', 'TabSeparated')"
The file
table function creates a table, and you can use DESCRIBE
to see the inferred schema:
./clickhouse local -q "DESCRIBE file('reviews.tsv')"
marketplace Nullable(String)
customer_id Nullable(Int64)
review_id Nullable(String)
product_id Nullable(String)
product_parent Nullable(Int64)
product_title Nullable(String)
product_category Nullable(String)
star_rating Nullable(Int64)
helpful_votes Nullable(Int64)
total_votes Nullable(Int64)
vine Nullable(String)
verified_purchase Nullable(String)
review_headline Nullable(String)
review_body Nullable(String)
review_date Nullable(Date)
Let's find a product with the highest rating:
./clickhouse local -q "SELECT
argMax(product_title,star_rating),
max(star_rating)
FROM file('reviews.tsv')"
Monopoly Junior Board Game 5
Query data in a Parquet file in AWS S3
If you have a file in S3, use clickhouse-local
and the s3
table function to query the file in place (without inserting the data into a ClickHouse table). We have a file named house_0.parquet
in a public bucket that contains home prices of property sold in the United Kingdom. Let's see how many rows it has:
./clickhouse local -q "
SELECT count()
FROM s3('https://datasets-documentation.s3.eu-west-3.amazonaws.com/house_parquet/house_0.parquet')"
The file has 2.7M rows:
2772030
It's always useful to see what the inferred schema that ClickHouse determines from the file:
./clickhouse local -q "DESCRIBE s3('https://datasets-documentation.s3.eu-west-3.amazonaws.com/house_parquet/house_0.parquet')"
price Nullable(Int64)
date Nullable(UInt16)
postcode1 Nullable(String)
postcode2 Nullable(String)
type Nullable(String)
is_new Nullable(UInt8)
duration Nullable(String)
addr1 Nullable(String)
addr2 Nullable(String)
street Nullable(String)
locality Nullable(String)
town Nullable(String)
district Nullable(String)
county Nullable(String)
Let's see what the most expensive neighborhoods are:
./clickhouse local -q "
SELECT
town,
district,
count() AS c,
round(avg(price)) AS price,
bar(price, 0, 5000000, 100)
FROM s3('https://datasets-documentation.s3.eu-west-3.amazonaws.com/house_parquet/house_0.parquet')
GROUP BY
town,
district
HAVING c >= 100
ORDER BY price DESC
LIMIT 10"
LONDON CITY OF LONDON 886 2271305 █████████████████████████████████████████████▍
LEATHERHEAD ELMBRIDGE 206 1176680 ███████████████████████▌
LONDON CITY OF WESTMINSTER 12577 1108221 ██████████████████████▏
LONDON KENSINGTON AND CHELSEA 8728 1094496 █████████████████████▉
HYTHE FOLKESTONE AND HYTHE 130 1023980 ████████████████████▍
CHALFONT ST GILES CHILTERN 113 835754 ████████████████▋
AMERSHAM BUCKINGHAMSHIRE 113 799596 ███████████████▉
VIRGINIA WATER RUNNYMEDE 356 789301 ███████████████▊
BARNET ENFIELD 282 740514 ██████████████▊
NORTHWOOD THREE RIVERS 184 731609 ██████████████▋
:::tip
When you are ready to insert your files into ClickHouse, startup a ClickHouse server and insert the results of your file
and s3
table functions into a MergeTree
table. View the Quick Start for more details.
:::
Usage
By default clickhouse-local
has access to data of a ClickHouse server on the same host, and it does not depend on the server's configuration. It also supports loading server configuration using --config-file
argument. For temporary data, a unique temporary data directory is created by default.
Basic usage (Linux):
$ clickhouse-local --structure "table_structure" --input-format "format_of_incoming_data" --query "query"
Basic usage (Mac):
$ ./clickhouse local --structure "table_structure" --input-format "format_of_incoming_data" --query "query"
:::note
clickhouse-local
is also supported on Windows through WSL2.
:::
Arguments:
-S
,--structure
— table structure for input data.--input-format
— input format,TSV
by default.-f
,--file
— path to data,stdin
by default.-q
,--query
— queries to execute with;
as delimiter. Cannot be used simultaneously with--queries-file
.--queries-file
- file path with queries to execute. Cannot be used simultaneously with--query
.--multiquery, -n
– If specified, multiple queries separated by semicolons can be listed after the--query
option. For convenience, it is also possible to omit--query
and pass the queries directly after--multiquery
.-N
,--table
— table name where to put output data,table
by default.--format
,--output-format
— output format,TSV
by default.-d
,--database
— default database,_local
by default.--stacktrace
— whether to dump debug output in case of exception.--echo
— print query before execution.--verbose
— more details on query execution.--logger.console
— Log to console.--logger.log
— Log file name.--logger.level
— Log level.--ignore-error
— do not stop processing if a query failed.-c
,--config-file
— path to configuration file in same format as for ClickHouse server, by default the configuration empty.--no-system-tables
— do not attach system tables.--help
— arguments references forclickhouse-local
.-V
,--version
— print version information and exit.
Also there are arguments for each ClickHouse configuration variable which are more commonly used instead of --config-file
.
Examples
$ echo -e "1,2\n3,4" | clickhouse-local --structure "a Int64, b Int64" \
--input-format "CSV" --query "SELECT * FROM table"
Read 2 rows, 32.00 B in 0.000 sec., 5182 rows/sec., 80.97 KiB/sec.
1 2
3 4
Previous example is the same as:
$ echo -e "1,2\n3,4" | clickhouse-local --query "
CREATE TABLE table (a Int64, b Int64) ENGINE = File(CSV, stdin);
SELECT a, b FROM table;
DROP TABLE table"
Read 2 rows, 32.00 B in 0.000 sec., 4987 rows/sec., 77.93 KiB/sec.
1 2
3 4
You don't have to use stdin
or --file
argument, and can open any number of files using the file
table function:
$ echo 1 | tee 1.tsv
1
$ echo 2 | tee 2.tsv
2
$ clickhouse-local --query "
select * from file('1.tsv', TSV, 'a int') t1
cross join file('2.tsv', TSV, 'b int') t2"
1 2
Now let’s output memory user for each Unix user:
Query:
$ ps aux | tail -n +2 | awk '{ printf("%s\t%s\n", $1, $4) }' \
| clickhouse-local --structure "user String, mem Float64" \
--query "SELECT user, round(sum(mem), 2) as memTotal
FROM table GROUP BY user ORDER BY memTotal DESC FORMAT Pretty"
Result:
Read 186 rows, 4.15 KiB in 0.035 sec., 5302 rows/sec., 118.34 KiB/sec.
┏━━━━━━━━━━┳━━━━━━━━━━┓
┃ user ┃ memTotal ┃
┡━━━━━━━━━━╇━━━━━━━━━━┩
│ bayonet │ 113.5 │
├──────────┼──────────┤
│ root │ 8.8 │
├──────────┼──────────┤
...