mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-15 10:52:30 +00:00
122 lines
3.8 KiB
Markdown
122 lines
3.8 KiB
Markdown
---
|
|
slug: /en/sql-reference/functions/time-window-functions
|
|
sidebar_position: 175
|
|
sidebar_label: Time Window
|
|
---
|
|
|
|
# Time Window Functions
|
|
|
|
Time window functions return the inclusive lower and exclusive upper bound of the corresponding window. The functions for working with WindowView are listed below:
|
|
|
|
## tumble
|
|
|
|
A tumbling time window assigns records to non-overlapping, continuous windows with a fixed duration (`interval`).
|
|
|
|
``` sql
|
|
tumble(time_attr, interval [, timezone])
|
|
```
|
|
|
|
**Arguments**
|
|
- `time_attr` - Date and time. [DateTime](../../sql-reference/data-types/datetime.md) data type.
|
|
- `interval` - Window interval in [Interval](../../sql-reference/data-types/special-data-types/interval.md) data type.
|
|
- `timezone` — [Timezone name](../../operations/server-configuration-parameters/settings.md#server_configuration_parameters-timezone) (optional).
|
|
|
|
**Returned values**
|
|
|
|
- The inclusive lower and exclusive upper bound of the corresponding tumbling window.
|
|
|
|
Type: `Tuple(DateTime, DateTime)`
|
|
|
|
**Example**
|
|
|
|
Query:
|
|
|
|
``` sql
|
|
SELECT tumble(now(), toIntervalDay('1'))
|
|
```
|
|
|
|
Result:
|
|
|
|
``` text
|
|
┌─tumble(now(), toIntervalDay('1'))─────────────┐
|
|
│ ['2020-01-01 00:00:00','2020-01-02 00:00:00'] │
|
|
└───────────────────────────────────────────────┘
|
|
```
|
|
|
|
## hop
|
|
|
|
A hopping time window has a fixed duration (`window_interval`) and hops by a specified hop interval (`hop_interval`). If the `hop_interval` is smaller than the `window_interval`, hopping windows are overlapping. Thus, records can be assigned to multiple windows.
|
|
|
|
``` sql
|
|
hop(time_attr, hop_interval, window_interval [, timezone])
|
|
```
|
|
|
|
**Arguments**
|
|
|
|
- `time_attr` - Date and time. [DateTime](../../sql-reference/data-types/datetime.md) data type.
|
|
- `hop_interval` - Hop interval in [Interval](../../sql-reference/data-types/special-data-types/interval.md) data type. Should be a positive number.
|
|
- `window_interval` - Window interval in [Interval](../../sql-reference/data-types/special-data-types/interval.md) data type. Should be a positive number.
|
|
- `timezone` — [Timezone name](../../operations/server-configuration-parameters/settings.md#server_configuration_parameters-timezone) (optional).
|
|
|
|
**Returned values**
|
|
|
|
- The inclusive lower and exclusive upper bound of the corresponding hopping window. Since one record can be assigned to multiple hop windows, the function only returns the bound of the **first** window when hop function is used **without** `WINDOW VIEW`.
|
|
|
|
Type: `Tuple(DateTime, DateTime)`
|
|
|
|
**Example**
|
|
|
|
Query:
|
|
|
|
``` sql
|
|
SELECT hop(now(), INTERVAL '1' SECOND, INTERVAL '2' SECOND)
|
|
```
|
|
|
|
Result:
|
|
|
|
``` text
|
|
┌─hop(now(), toIntervalSecond('1'), toIntervalSecond('2'))──┐
|
|
│ ('2020-01-14 16:58:22','2020-01-14 16:58:24') │
|
|
└───────────────────────────────────────────────────────────┘
|
|
```
|
|
|
|
## tumbleStart
|
|
|
|
Returns the inclusive lower bound of the corresponding tumbling window.
|
|
|
|
``` sql
|
|
tumbleStart(bounds_tuple);
|
|
tumbleStart(time_attr, interval [, timezone]);
|
|
```
|
|
|
|
## tumbleEnd
|
|
|
|
Returns the exclusive upper bound of the corresponding tumbling window.
|
|
|
|
``` sql
|
|
tumbleEnd(bounds_tuple);
|
|
tumbleEnd(time_attr, interval [, timezone]);
|
|
```
|
|
|
|
## hopStart
|
|
|
|
Returns the inclusive lower bound of the corresponding hopping window.
|
|
|
|
``` sql
|
|
hopStart(bounds_tuple);
|
|
hopStart(time_attr, hop_interval, window_interval [, timezone]);
|
|
```
|
|
|
|
## hopEnd
|
|
|
|
Returns the exclusive upper bound of the corresponding hopping window.
|
|
|
|
``` sql
|
|
hopEnd(bounds_tuple);
|
|
hopEnd(time_attr, hop_interval, window_interval [, timezone]);
|
|
```
|
|
|
|
## Related content
|
|
|
|
- Blog: [Working with time series data in ClickHouse](https://clickhouse.com/blog/working-with-time-series-data-and-functions-ClickHouse)
|