* Refactoring in preparation for AMP support * infrastructure for AMP validation * Add Metrika counter on AMP page + adjust layout * more content fixes * improve amp layout * improve navigation * Move converting admonitions to generation time * strict amp test check * Batch AMP validation * Add date published/modified to docs articles and their ld+json meta * few more content fixes * improve ld+json meta * adjust margins * skip published/modified for stable release docs * adapt single page mode * update po * skip published/modified for single page docs * update po * adjust layout * adjust layout
2.8 KiB
toc_priority | toc_title |
---|---|
44 | Mathematical |
Mathematical Functions
All the functions return a Float64 number. The accuracy of the result is close to the maximum precision possible, but the result might not coincide with the machine representable number nearest to the corresponding real number.
e()
Returns a Float64 number that is close to the number e.
pi()
Returns a Float64 number that is close to the number π.
exp(x)
Accepts a numeric argument and returns a Float64 number close to the exponent of the argument.
log(x), ln(x)
Accepts a numeric argument and returns a Float64 number close to the natural logarithm of the argument.
exp2(x)
Accepts a numeric argument and returns a Float64 number close to 2 to the power of x.
log2(x)
Accepts a numeric argument and returns a Float64 number close to the binary logarithm of the argument.
exp10(x)
Accepts a numeric argument and returns a Float64 number close to 10 to the power of x.
log10(x)
Accepts a numeric argument and returns a Float64 number close to the decimal logarithm of the argument.
sqrt(x)
Accepts a numeric argument and returns a Float64 number close to the square root of the argument.
cbrt(x)
Accepts a numeric argument and returns a Float64 number close to the cubic root of the argument.
erf(x)
If ‘x’ is non-negative, then erf(x / σ√2)
is the probability that a random variable having a normal distribution with standard deviation ‘σ’ takes the value that is separated from the expected value by more than ‘x’.
Example (three sigma rule):
SELECT erf(3 / sqrt(2))
┌─erf(divide(3, sqrt(2)))─┐
│ 0.9973002039367398 │
└─────────────────────────┘
erfc(x)
Accepts a numeric argument and returns a Float64 number close to 1 - erf(x), but without loss of precision for large ‘x’ values.
lgamma(x)
The logarithm of the gamma function.
tgamma(x)
Gamma function.
sin(x)
The sine.
cos(x)
The cosine.
tan(x)
The tangent.
asin(x)
The arc sine.
acos(x)
The arc cosine.
atan(x)
The arc tangent.
pow(x, y), power(x, y)
Takes two numeric arguments x and y. Returns a Float64 number close to x to the power of y.
intExp2
Accepts a numeric argument and returns a UInt64 number close to 2 to the power of x.
intExp10
Accepts a numeric argument and returns a UInt64 number close to 10 to the power of x.