mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-20 13:15:42 +00:00
16ca492938
* CLICKHOUSE-4063: less manual html @ index.md * CLICKHOUSE-4063: recommend markdown="1" in README.md * CLICKHOUSE-4003: manually purge custom.css for now * CLICKHOUSE-4064: expand <details> before any print (including to pdf) * CLICKHOUSE-3927: rearrange interfaces/formats.md a bit * CLICKHOUSE-3306: add few http headers * Remove copy-paste introduced in #3392 * Hopefully better chinese fonts #3392 * get rid of tabs @ custom.css * Apply comments and patch from #3384 * Add jdbc.md to ToC and some translation, though it still looks badly incomplete * minor punctuation * Add some backlinks to official website from mirrors that just blindly take markdown sources * Do not make fonts extra light * find . -name '*.md' -type f | xargs -I{} perl -pi -e 's//g' {} * find . -name '*.md' -type f | xargs -I{} perl -pi -e 's/ sql/g' {} * Remove outdated stuff from roadmap.md * Not so light font on front page too * Refactor Chinese formats.md to match recent changes in other languages * Update some links on front page * Remove some outdated comment * Add twitter link to front page * More front page links tuning * Add Amsterdam meetup link * Smaller font to avoid second line * Add Amsterdam link to README.md * Proper docs nav translation * Back to 300 font-weight except Chinese * fix docs build * Update Amsterdam link * remove symlinks * more zh punctuation * apply lost comment by @zhang2014 * Apply comments by @zhang2014 from #3417 * Remove Beijing link * rm incorrect symlink * restore content of docs/zh/operations/table_engines/index.md * CLICKHOUSE-3751: stem terms while searching docs * CLICKHOUSE-3751: use English stemmer in non-English docs too * CLICKHOUSE-4135 fix * Remove past meetup link * Add blog link to top nav * Add ContentSquare article link * Add form link to front page + refactor some texts * couple markup fixes * minor * Introduce basic ODBC driver page in docs * More verbose 3rd party libs disclaimer * Put third-party stuff into a separate folder * Separate third-party stuff in ToC too * Update links * Move stuff that is not really (only) a client library into a separate page * Add clickhouse-hdfs-loader link * Some introduction for "interfaces" section * Rewrite tcp.md * http_interface.md -> http.md * fix link * Remove unconvenient error for now * try to guess anchor instead of failing * remove symlink * Remove outdated info from introduction * remove ru roadmap.md * replace ru roadmap.md with symlink * Update roadmap.md * lost file * Title case in toc_en.yml * Sync "Functions" ToC section with en * Remove reference to pretty old ClickHouse release from docs * couple lost symlinks in fa * Close quote in proper place * Rewrite en/getting_started/index.md * Sync en<>ru getting_started/index.md * minor changes * Some gui.md refactoring * Translate DataGrip section to ru * Translate DataGrip section to zh * Translate DataGrip section to fa * Translate DBeaver section to fa * Translate DBeaver section to zh * Split third-party GUI to open-source and commercial * Mention some RDBMS integrations + ad-hoc translation fixes * Add rel="external nofollow" to outgoing links from docs * Lost blank lines * Fix class name * More rel="external nofollow" * Apply suggestions by @sundy-li * Mobile version of front page improvements * test * test 2 * test 3 * Update LICENSE * minor docs fix * Highlight current article as suggested by @sundy-li * fix link destination * Introduce backup.md (only "en" for now) * Mention INSERT+SELECT in backup.md * Some improvements for replication.md * Add backup.md to toc * Mention clickhouse-backup tool * Mention LightHouse in third-party GUI list * Introduce interfaces/third-party/proxy.md * Add clickhouse-bulk to proxy.md * Major extension of integrations.md contents * fix link target * remove unneeded file * better toc item name * fix markdown * better ru punctuation * Add yet another possible backup approach * Simplify copying permalinks to headers * Support non-eng link anchors in docs + update some deps * Generate anchors for single-page mode automatically * Remove anchors to top of pages * Remove anchors that nobody links to * build fixes * fix few links * restore css * fix some links * restore gifs * fix lost words * more docs fixes * docs fixes * NULL anchor * update urllib3 dependency * more fixes
124 lines
19 KiB
Markdown
124 lines
19 KiB
Markdown
|
||
# Distributed
|
||
|
||
**Движок Distributed не хранит данные самостоятельно**, а позволяет обрабатывать запросы распределённо, на нескольких серверах.
|
||
Чтение автоматически распараллеливается. При чтении будут использованы индексы таблиц на удалённых серверах, если есть.
|
||
Движок Distributed принимает параметры: имя кластера в конфигурационном файле сервера, имя удалённой базы данных, имя удалённой таблицы, а также (не обязательно) ключ шардирования.
|
||
Пример:
|
||
|
||
```
|
||
Distributed(logs, default, hits[, sharding_key])
|
||
```
|
||
|
||
данные будут читаться со всех серверов кластера logs, из таблицы default.hits, расположенной на каждом сервере кластера.
|
||
Данные не только читаются, но и частично (настолько, насколько это возможно) обрабатываются на удалённых серверах.
|
||
Например, при запросе с GROUP BY, данные будут агрегированы на удалённых серверах, промежуточные состояния агрегатных функций будут отправлены на запросивший сервер; затем данные будут доагрегированы.
|
||
|
||
Вместо имени базы данных может использоваться константное выражение, возвращающее строку. Например, currentDatabase().
|
||
|
||
logs - имя кластера в конфигурационном файле сервера.
|
||
|
||
Кластеры задаются следующим образом:
|
||
|
||
```xml
|
||
<remote_servers>
|
||
<logs>
|
||
<shard>
|
||
<!-- Не обязательно. Вес шарда при записи данных. По умолчанию, 1. -->
|
||
<weight>1</weight>
|
||
<!-- Не обязательно. Записывать ли данные только на одну, любую из реплик. По умолчанию, false - записывать данные на все реплики. -->
|
||
<internal_replication>false</internal_replication>
|
||
<replica>
|
||
<host>example01-01-1</host>
|
||
<port>9000</port>
|
||
</replica>
|
||
<replica>
|
||
<host>example01-01-2</host>
|
||
<port>9000</port>
|
||
</replica>
|
||
</shard>
|
||
<shard>
|
||
<weight>2</weight>
|
||
<internal_replication>false</internal_replication>
|
||
<replica>
|
||
<host>example01-02-1</host>
|
||
<port>9000</port>
|
||
</replica>
|
||
<replica>
|
||
<host>example01-02-2</host>
|
||
<port>9000</port>
|
||
</replica>
|
||
</shard>
|
||
</logs>
|
||
</remote_servers>
|
||
```
|
||
|
||
Здесь задан кластер с именем logs, состоящий из двух шардов, каждый из которых состоит из двух реплик.
|
||
Шардами называются серверы, содержащие разные части данных (чтобы прочитать все данные, нужно идти на все шарды).
|
||
Репликами называются дублирующие серверы (чтобы прочитать данные, можно идти за данными на любую из реплик).
|
||
|
||
Имя кластера не должно содержать точки.
|
||
|
||
В качестве параметров для каждого сервера указываются `host`, `port` и, не обязательно, `user`, `password`, `secure`, `compression`:
|
||
|
||
: - `host` - адрес удалённого сервера. Может быть указан домен, или IPv4 или IPv6 адрес. В случае указания домена, при старте сервера делается DNS запрос, и результат запоминается на всё время работы сервера. Если DNS запрос неуспешен, то сервер не запускается. Если вы изменяете DNS-запись, перезапустите сервер.
|
||
- `port` - TCP-порт для межсерверного взаимодействия (в конфиге - tcp_port, обычно 9000). Не перепутайте с http_port.
|
||
- `user` - имя пользователя для соединения с удалённым сервером. по умолчанию - default. Этот пользователь должен иметь доступ для соединения с указанным сервером. Доступы настраиваются в файле users.xml, подробнее смотрите в разделе "Права доступа".
|
||
- `password` - пароль для соединения с удалённым сервером, в открытом виде. по умолчанию - пустая строка.
|
||
- `secure` - Использовать шифрованое соединение ssl, Обычно используется с портом `port` = 9440. Сервер должен слушать порт <tcp_port_secure>9440</tcp_port_secure> с корректными настройками сертификатов.
|
||
- `compression` - Использовать сжатие данных. По умолчанию: true.
|
||
|
||
|
||
При указании реплик, для каждого из шардов, при чтении, будет выбрана одна из доступных реплик. Можно настроить алгоритм балансировки нагрузки (то есть, предпочтения, на какую из реплик идти) - см. настройку load_balancing.
|
||
Если соединение с сервером не установлено, то будет произведена попытка соединения с небольшим таймаутом. Если соединиться не удалось, то будет выбрана следующая реплика, и так для всех реплик. Если попытка соединения для всех реплик не удалась, то будут снова произведены попытки соединения по кругу, и так несколько раз.
|
||
Это работает в пользу отказоустойчивости, хотя и не обеспечивает полную отказоустойчивость: удалённый сервер может принять соединение, но не работать, или плохо работать.
|
||
|
||
Можно указать от одного шарда (в таком случае, обработку запроса стоит называть удалённой, а не распределённой) до произвольного количества шардов. В каждом шарде можно указать от одной до произвольного числа реплик. Можно указать разное число реплик для каждого шарда.
|
||
|
||
Вы можете прописать сколько угодно кластеров в конфигурации.
|
||
|
||
Для просмотра имеющихся кластеров, вы можете использовать системную таблицу system.clusters.
|
||
|
||
Движок Distributed позволяет работать с кластером, как с локальным сервером. При этом, кластер является неэластичным: вы должны прописать его конфигурацию в конфигурационный файл сервера (лучше всех серверов кластера).
|
||
|
||
Не поддерживаются Distributed таблицы, смотрящие на другие Distributed таблицы (за исключением случаев, когда у Distributed таблицы всего один шард). Вместо этого, сделайте так, чтобы Distributed таблица смотрела на "конечные" таблицы.
|
||
|
||
Как видно, движок Distributed требует прописывания кластера в конфигурационный файл; кластера из конфигурационного файла обновляются налету, без перезапуска сервера. Если вам необходимо каждый раз отправлять запрос на неизвестный набор шардов и реплик, вы можете не создавать Distributed таблицу, а воспользоваться табличной функцией remote. Смотрите раздел "Табличные функции".
|
||
|
||
Есть два способа записывать данные на кластер:
|
||
|
||
Во первых, вы можете самостоятельно определять, на какие серверы какие данные записывать, и выполнять запись непосредственно на каждый шард. То есть, делать INSERT в те таблицы, на которые "смотрит" распределённая таблица.
|
||
Это наиболее гибкое решение - вы можете использовать любую схему шардирования, которая может быть нетривиальной из-за требований предметной области.
|
||
Также это является наиболее оптимальным решением, так как данные могут записываться на разные шарды полностью независимо.
|
||
|
||
Во вторых, вы можете делать INSERT в Distributed таблицу. В этом случае, таблица будет сама распределять вставляемые данные по серверам.
|
||
Для того, чтобы писать в Distributed таблицу, у неё должен быть задан ключ шардирования (последний параметр). Также, если шард всего-лишь один, то запись работает и без указания ключа шардирования (так как в этом случае он не имеет смысла).
|
||
|
||
У каждого шарда в конфигурационном файле может быть задан "вес" (weight). По умолчанию, вес равен единице. Данные будут распределяться по шардам в количестве, пропорциональном весу шарда. Например, если есть два шарда, и у первого выставлен вес 9, а у второго 10, то на первый будет отправляться 9 / 19 доля строк, а на второй - 10 / 19.
|
||
|
||
У каждого шарда в конфигурационном файле может быть указан параметр internal_replication.
|
||
|
||
Если он выставлен в true, то для записи будет выбираться первая живая реплика и данные будут писаться на неё. Этот вариант следует использовать, если Distributed таблица "смотрит" на реплицируемые таблицы. То есть, если таблица, в которую будут записаны данные, будет сама заниматься их репликацией.
|
||
|
||
Если он выставлен в false (по умолчанию), то данные будут записываться на все реплики. По сути, это означает, что Distributed таблица занимается репликацией данных самостоятельно. Это хуже, чем использование реплицируемых таблиц, так как не контролируется консистентность реплик, и они со временем будут содержать немного разные данные.
|
||
|
||
Для выбора шарда, на который отправляется строка данных, вычисляется выражение шардирования, и берётся его остаток от деления на суммарный вес шардов. Строка отправляется на шард, соответствующий полуинтервалу остатков от prev_weights до prev_weights + weight, где prev_weights - сумма весов шардов с меньшим номером, а weight - вес этого шарда. Например, если есть два шарда, и у первого выставлен вес 9, а у второго 10, то строка будет отправляться на первый шард для остатков из диапазона \[0, 9), а на второй - для остатков из диапазона \[9, 19).
|
||
|
||
Выражением шардирование может быть произвольное выражение от констант и столбцов таблицы, возвращающее целое число. Например, вы можете использовать выражение rand() для случайного распределения данных, или UserID - для распределения по остатку от деления идентификатора посетителя (тогда данные одного посетителя будут расположены на одном шарде, что упростит выполнение IN и JOIN по посетителям). Если распределение какого-либо столбца недостаточно равномерное, вы можете обернуть его в хэш функцию: intHash64(UserID).
|
||
|
||
Простой остаток от деления является довольно ограниченным решением для шардирования и подходит не для всех случаев. Он подходит для среднего и большого объёма данных (десятки серверов), но не для очень больших объёмов данных (сотни серверов и больше). В последнем случае, лучше использовать схему шардирования, продиктованную требованиями предметной области, и не использовать возможность записи в Distributed таблицы.
|
||
|
||
Запросы SELECT отправляются на все шарды, и работают независимо от того, каким образом данные распределены по шардам (они могут быть распределены полностью случайно). При добавлении нового шарда, можно не переносить на него старые данные, а записывать новые данные с большим весом - данные будут распределены слегка неравномерно, но запросы будут работать корректно и достаточно эффективно.
|
||
|
||
Беспокоиться о схеме шардирования имеет смысл в следующих случаях:
|
||
- используются запросы, требующие соединение данных (IN, JOIN) по определённому ключу - тогда если данные шардированы по этому ключу, то можно использовать локальные IN, JOIN вместо GLOBAL IN, GLOBAL JOIN, что кардинально более эффективно.
|
||
- используется большое количество серверов (сотни и больше) и большое количество маленьких запросов (запросы отдельных клиентов - сайтов, рекламодателей, партнёров) - тогда, для того, чтобы маленькие запросы не затрагивали весь кластер, имеет смысл располагать данные одного клиента на одном шарде, или (вариант, который используется в Яндекс.Метрике) сделать двухуровневое шардирование: разбить весь кластер на "слои", где слой может состоять из нескольких шардов; данные для одного клиента располагаются на одном слое, но в один слой можно по мере необходимости добавлять шарды, в рамках которых данные распределены произвольным образом; создаются распределённые таблицы на каждый слой и одна общая распределённая таблица для глобальных запросов.
|
||
|
||
Запись данных осуществляется полностью асинхронно. При INSERT-е в Distributed таблицу, блок данных всего лишь записывается в локальную файловую систему. Данные отправляются на удалённые серверы в фоне, при первой возможности. Вы должны проверять, успешно ли отправляются данные, проверяя список файлов (данные, ожидающие отправки) в директории таблицы: /var/lib/clickhouse/data/database/table/.
|
||
|
||
Если после INSERT-а в Distributed таблицу, сервер перестал существовать или был грубо перезапущен (например, в следствие аппаратного сбоя), то записанные данные могут быть потеряны. Если в директории таблицы обнаружен повреждённый кусок данных, то он переносится в поддиректорию broken и больше не используется.
|
||
|
||
При выставлении опции max_parallel_replicas выполнение запроса распараллеливается по всем репликам внутри одного шарда. Подробнее смотрите раздел "Настройки, max_parallel_replicas".
|
||
|
||
[Оригинальная статья](https://clickhouse.yandex/docs/ru/operations/table_engines/distributed/) <!--hide-->
|