4.7 KiB
Возможные глупые вопросы
Почему бы не использовать системы типа MapReduce?
Системами типа map-reduce будем называть системы распределённых вычислений, в которых операция reduce сделана на основе распределённой сортировки. Таким образом, к ним относятся Hadoop и YT (YT является внутренней разработкой Яндекса).
Такие системы не подходят для онлайн запросов в силу слишком большой latency. То есть, не могут быть использованы в качестве бэкенда для веб-интерфейса. Такие системы не подходят для обновления данных в реальном времени. Распределённая сортировка не является оптимальным способом выполнения операции reduce, если результат выполнения операции и все промежуточные результаты, при их наличии, помещаются в оперативку на одном сервере, как обычно бывает в запросах, выполняющихся в режиме онлайн. В таком случае, оптимальным способом выполнения операции reduce является хэш-таблица. Частым способом оптимизации map-reduce задач является предагрегация (частичный reduce) с использованием хэш-таблицы в оперативке. Эта оптимизация делается пользователем в ручном режиме. Распределённая сортировка является основной причиной тормозов при выполнении несложных map-reduce задач.
Системы типа map-reduce позволяют выполнять произвольный код на кластере. Но для OLAP задач лучше подходит декларативный язык запросов, который позволяет быстро проводить исследования. Для примера, для Hadoop существует Hive и Pig. Также смотрите Cloudera Impala, Shark (устаревший) для Spark а также Spark SQL, Presto, Apache Drill. Впрочем, производительность при выполнении таких задач является сильно неоптимальной по сравнению со специализированными системами, а сравнительно высокая latency не позволяет использовать эти системы в качестве бэкенда для веб-интерфейса.
YT позволяет хранить группы столбцов по отдельности. Но YT нельзя назвать по-настоящему столбцовой системой, так как в системе отсутствуют типы данных постоянной длины (чтобы можно было эффективно хранить числа без "мусора"), а также за счёт отсутствия векторного движка. Задачи в YT выполняются с помощью произвольного кода в режиме streaming, то есть, не могут быть достаточно оптимизированы (до сотен миллионов строк в секунду на один сервер). В YT в 2014-2016 годах находится в разработке функциональность "динамических сортированных таблиц" с использованием Merge Tree, строгой типизацией значений и языком запросов типа SQL. Динамические сортированные таблицы не подходят для OLAP задач, так как данные в них хранятся по строкам. Разработка языка запросов в YT всё ещё находится в зачаточной стадии, что не позволяет ориентироваться на эту функциональность. Разработчики YT рассматривают динамические сортированные таблицы для применения в OLTP и Key-Value сценариях работы.