ClickHouse/docs/ru/guides/apply-catboost-model.md
2022-04-09 07:29:05 -06:00

9.7 KiB
Raw Blame History

sidebar_position sidebar_label
41 Применение модели CatBoost в ClickHouse

Применение модели CatBoost в ClickHouse

CatBoost — открытая программная библиотека разработанная компанией Яндекс для машинного обучения, которая использует схему градиентного бустинга.

С помощью этой инструкции вы научитесь применять предобученные модели в ClickHouse: в результате вы запустите вывод модели из SQL.

Чтобы применить модель CatBoost в ClickHouse:

  1. Создайте таблицу.
  2. Вставьте данные в таблицу.
  3. Интегрируйте CatBoost в ClickHouse (Опциональный шаг).
  4. Запустите вывод модели из SQL.

Подробнее об обучении моделей в CatBoost, см. Обучение и применение моделей.

Вы можете перегрузить модели CatBoost, если их конфигурация была обновлена, без перезагрузки сервера. Для этого используйте системные запросы RELOAD MODEL и RELOAD MODELS.

Перед началом работы

Если у вас еще нет Docker, установите его.

:::note "Примечание"
[Docker](https://www.docker.com)  это программная платформа для создания контейнеров, которые изолируют установку CatBoost и ClickHouse от остальной части системы.
:::

Перед применением модели CatBoost:

1. Скачайте Docker-образ из реестра:

$ docker pull yandex/tutorial-catboost-clickhouse

Данный Docker-образ содержит все необходимое для запуска CatBoost и ClickHouse: код, среду выполнения, библиотеки, переменные окружения и файлы конфигурации.

2. Проверьте, что Docker-образ успешно скачался:

$ docker image ls
REPOSITORY                            TAG                 IMAGE ID            CREATED             SIZE
yandex/tutorial-catboost-clickhouse   latest              622e4d17945b        22 hours ago        1.37GB

3. Запустите Docker-контейнер основанный на данном образе:

$ docker run -it -p 8888:8888 yandex/tutorial-catboost-clickhouse

1. Создайте таблицу

Чтобы создать таблицу для обучающей выборки:

1. Запустите клиент ClickHouse:

$ clickhouse client
:::note "Примечание"
Сервер ClickHouse уже запущен внутри Docker-контейнера.
:::

2. Создайте таблицу в ClickHouse с помощью следующей команды:

:) CREATE TABLE amazon_train
(
    date Date MATERIALIZED today(),
    ACTION UInt8,
    RESOURCE UInt32,
    MGR_ID UInt32,
    ROLE_ROLLUP_1 UInt32,
    ROLE_ROLLUP_2 UInt32,
    ROLE_DEPTNAME UInt32,
    ROLE_TITLE UInt32,
    ROLE_FAMILY_DESC UInt32,
    ROLE_FAMILY UInt32,
    ROLE_CODE UInt32
)
ENGINE = MergeTree ORDER BY date

3. Выйдите из клиента ClickHouse:

:) exit

2. Вставьте данные в таблицу

Чтобы вставить данные:

1. Выполните следующую команду:

$ clickhouse client --host 127.0.0.1 --query 'INSERT INTO amazon_train FORMAT CSVWithNames' < ~/amazon/train.csv

2. Запустите клиент ClickHouse:

$ clickhouse client

3. Проверьте, что данные успешно загрузились:

:) SELECT count() FROM amazon_train

SELECT count()
FROM amazon_train

+-count()-+
|   65538 |
+---------+

3. Интегрируйте CatBoost в ClickHouse

:::note "Примечание"
**Опциональный шаг.** Docker-образ содержит все необходимое для запуска CatBoost и ClickHouse.
:::

Чтобы интегрировать CatBoost в ClickHouse:

1. Создайте библиотеку для оценки модели.

Наиболее быстрый способ оценить модель CatBoost — это скомпилировать библиотеку libcatboostmodel.<so|dll|dylib>. Подробнее о том, как скомпилировать библиотеку, читайте в документации CatBoost.

2. Создайте в любом месте новую директорию с произвольным названием, например data и поместите в нее созданную библиотеку. Docker-образ уже содержит библиотеку data/libcatboostmodel.so.

3. Создайте в любом месте новую директорию для конфигурации модели с произвольным названием, например models.

4. Создайте файл конфигурации модели с произвольным названием, например models/amazon_model.xml.

5. Опишите конфигурацию модели:

<models>
    <model>
        <!-- Тип модели. В настоящий момент ClickHouse предоставляет только модель catboost. -->
        <type>catboost</type>
        <!-- Имя модели. -->
        <name>amazon</name>
        <!-- Путь к обученной модели. -->
        <path>/home/catboost/tutorial/catboost_model.bin</path>
        <!-- Интервал обновления. -->
        <lifetime>0</lifetime>
    </model>
</models>

6. Добавьте в конфигурацию ClickHouse путь к CatBoost и конфигурации модели:

<!-- Файл etc/clickhouse-server/config.d/models_config.xml. -->
<catboost_dynamic_library_path>/home/catboost/data/libcatboostmodel.so</catboost_dynamic_library_path>
<models_config>/home/catboost/models/*_model.xml</models_config>
:::note "Примечание"
Вы можете позднее изменить путь к конфигурации модели CatBoost без перезагрузки сервера.
:::

4. Запустите вывод модели из SQL

Для тестирования модели запустите клиент ClickHouse $ clickhouse client.

Проверьте, что модель работает:

:) SELECT
    modelEvaluate('amazon',
                RESOURCE,
                MGR_ID,
                ROLE_ROLLUP_1,
                ROLE_ROLLUP_2,
                ROLE_DEPTNAME,
                ROLE_TITLE,
                ROLE_FAMILY_DESC,
                ROLE_FAMILY,
                ROLE_CODE) > 0 AS prediction,
    ACTION AS target
FROM amazon_train
LIMIT 10
:::note "Примечание"
Функция [modelEvaluate](../sql-reference/functions/other-functions.md#function-modelevaluate) возвращает кортежи (tuple) с исходными прогнозами по классам для моделей с несколькими классами.
:::

Спрогнозируйте вероятность:

:) SELECT
    modelEvaluate('amazon',
                RESOURCE,
                MGR_ID,
                ROLE_ROLLUP_1,
                ROLE_ROLLUP_2,
                ROLE_DEPTNAME,
                ROLE_TITLE,
                ROLE_FAMILY_DESC,
                ROLE_FAMILY,
                ROLE_CODE) AS prediction,
    1. / (1 + exp(-prediction)) AS probability,
    ACTION AS target
FROM amazon_train
LIMIT 10
:::note "Примечание"
Подробнее про функцию [exp()](../sql-reference/functions/math-functions.md).
:::

Посчитайте логистическую функцию потерь (LogLoss) на всей выборке:

:) SELECT -avg(tg * log(prob) + (1 - tg) * log(1 - prob)) AS logloss
FROM
(
    SELECT
        modelEvaluate('amazon',
                    RESOURCE,
                    MGR_ID,
                    ROLE_ROLLUP_1,
                    ROLE_ROLLUP_2,
                    ROLE_DEPTNAME,
                    ROLE_TITLE,
                    ROLE_FAMILY_DESC,
                    ROLE_FAMILY,
                    ROLE_CODE) AS prediction,
        1. / (1. + exp(-prediction)) AS prob,
        ACTION AS tg
    FROM amazon_train
)
:::note "Примечание"
Подробнее про функции [avg()](../sql-reference/aggregate-functions/reference/avg.md#agg_function-avg), [log()](../sql-reference/functions/math-functions.md).
:::