13 KiB
toc_priority | toc_title |
---|---|
38 | Operators |
Operators
ClickHouse transforms operators to their corresponding functions at the query parsing stage according to their priority, precedence, and associativity.
Access Operators
a[N]
– Access to an element of an array. The arrayElement(a, N)
function.
a.N
– Access to a tuple element. The tupleElement(a, N)
function.
Numeric Negation Operator
-a
– The negate (a)
function.
Multiplication and Division Operators
a * b
– The multiply (a, b)
function.
a / b
– The divide(a, b)
function.
a % b
– The modulo(a, b)
function.
Addition and Subtraction Operators
a + b
– The plus(a, b)
function.
a - b
– The minus(a, b)
function.
Comparison Operators
a = b
– The equals(a, b)
function.
a == b
– The equals(a, b)
function.
a != b
– The notEquals(a, b)
function.
a <> b
– The notEquals(a, b)
function.
a <= b
– The lessOrEquals(a, b)
function.
a >= b
– The greaterOrEquals(a, b)
function.
a < b
– The less(a, b)
function.
a > b
– The greater(a, b)
function.
a LIKE s
– The like(a, b)
function.
a NOT LIKE s
– The notLike(a, b)
function.
a ILIKE s
– The ilike(a, b)
function.
a BETWEEN b AND c
– The same as a >= b AND a <= c
.
a NOT BETWEEN b AND c
– The same as a < b OR a > c
.
Operators for Working with Data Sets
See IN operators.
a IN ...
– The in(a, b)
function.
a NOT IN ...
– The notIn(a, b)
function.
a GLOBAL IN ...
– The globalIn(a, b)
function.
a GLOBAL NOT IN ...
– The globalNotIn(a, b)
function.
ALL
– The operator allows you to get data by comparing the value with the list of values returned by the subquery. The comparison condition must be running for all values of the subquery.
The subquery must select values of the same type as those compared in the main predicate.
Example
Query:
SELECT number AS a FROM numbers(10) WHERE a > all(SELECT number FROM numbers(3, 3));
Result:
┌─a─┐
│ 6 │
│ 7 │
│ 8 │
│ 9 │
└───┘
ANY
– The operator is comparing a value to a set of values returned by a subquery. The comparison condition can be running for any values of the subquery.
The subquery must select values of the same type as those compared in the main predicate.
Example
Query:
SELECT number AS a FROM numbers(10) WHERE a > any(SELECT number FROM numbers(3, 3));
Result:
┌─a─┐
│ 4 │
│ 5 │
│ 6 │
│ 7 │
│ 8 │
│ 9 │
└───┘
Operators for Working with Dates and Times
EXTRACT
EXTRACT(part FROM date);
Extract parts from a given date. For example, you can retrieve a month from a given date, or a second from a time.
The part
parameter specifies which part of the date to retrieve. The following values are available:
DAY
— The day of the month. Possible values: 1–31.MONTH
— The number of a month. Possible values: 1–12.YEAR
— The year.SECOND
— The second. Possible values: 0–59.MINUTE
— The minute. Possible values: 0–59.HOUR
— The hour. Possible values: 0–23.
The part
parameter is case-insensitive.
The date
parameter specifies the date or the time to process. Either Date or DateTime type is supported.
Examples:
SELECT EXTRACT(DAY FROM toDate('2017-06-15'));
SELECT EXTRACT(MONTH FROM toDate('2017-06-15'));
SELECT EXTRACT(YEAR FROM toDate('2017-06-15'));
In the following example we create a table and insert into it a value with the DateTime
type.
CREATE TABLE test.Orders
(
OrderId UInt64,
OrderName String,
OrderDate DateTime
)
ENGINE = Log;
INSERT INTO test.Orders VALUES (1, 'Jarlsberg Cheese', toDateTime('2008-10-11 13:23:44'));
SELECT
toYear(OrderDate) AS OrderYear,
toMonth(OrderDate) AS OrderMonth,
toDayOfMonth(OrderDate) AS OrderDay,
toHour(OrderDate) AS OrderHour,
toMinute(OrderDate) AS OrderMinute,
toSecond(OrderDate) AS OrderSecond
FROM test.Orders;
┌─OrderYear─┬─OrderMonth─┬─OrderDay─┬─OrderHour─┬─OrderMinute─┬─OrderSecond─┐
│ 2008 │ 10 │ 11 │ 13 │ 23 │ 44 │
└───────────┴────────────┴──────────┴───────────┴─────────────┴─────────────┘
You can see more examples in tests.
INTERVAL
Creates an Interval-type value that should be used in arithmetical operations with Date and DateTime-type values.
Types of intervals:
SECOND
MINUTE
HOUR
DAY
WEEK
MONTH
QUARTER
YEAR
You can also use a string literal when setting the INTERVAL
value. For example, INTERVAL 1 HOUR
is identical to the INTERVAL '1 hour'
or INTERVAL '1' hour
.
!!! warning "Warning"
Intervals with different types can’t be combined. You can’t use expressions like INTERVAL 4 DAY 1 HOUR
. Specify intervals in units that are smaller or equal to the smallest unit of the interval, for example, INTERVAL 25 HOUR
. You can use consecutive operations, like in the example below.
Examples:
SELECT now() AS current_date_time, current_date_time + INTERVAL 4 DAY + INTERVAL 3 HOUR;
┌───current_date_time─┬─plus(plus(now(), toIntervalDay(4)), toIntervalHour(3))─┐
│ 2020-11-03 22:09:50 │ 2020-11-08 01:09:50 │
└─────────────────────┴────────────────────────────────────────────────────────┘
SELECT now() AS current_date_time, current_date_time + INTERVAL '4 day' + INTERVAL '3 hour';
┌───current_date_time─┬─plus(plus(now(), toIntervalDay(4)), toIntervalHour(3))─┐
│ 2020-11-03 22:12:10 │ 2020-11-08 01:12:10 │
└─────────────────────┴────────────────────────────────────────────────────────┘
SELECT now() AS current_date_time, current_date_time + INTERVAL '4' day + INTERVAL '3' hour;
┌───current_date_time─┬─plus(plus(now(), toIntervalDay('4')), toIntervalHour('3'))─┐
│ 2020-11-03 22:33:19 │ 2020-11-08 01:33:19 │
└─────────────────────┴────────────────────────────────────────────────────────────┘
You can work with dates without using INTERVAL
, just by adding or subtracting seconds, minutes, and hours. For example, an interval of one day can be set by adding 60*60*24
.
!!! note "Note"
The INTERVAL
syntax or addDays
function are always preferred. Simple addition or subtraction (syntax like now() + ...
) doesn't consider time settings. For example, daylight saving time.
Examples:
SELECT toDateTime('2014-10-26 00:00:00', 'Europe/Moscow') AS time, time + 60 * 60 * 24 AS time_plus_24_hours, time + toIntervalDay(1) AS time_plus_1_day;
┌────────────────time─┬──time_plus_24_hours─┬─────time_plus_1_day─┐
│ 2014-10-26 00:00:00 │ 2014-10-26 23:00:00 │ 2014-10-27 00:00:00 │
└─────────────────────┴─────────────────────┴─────────────────────┘
See Also
- Interval data type
- toInterval type conversion functions
Logical AND Operator
Syntax SELECT a AND b
— calculates logical conjunction of a
and b
with the function and.
Logical OR Operator
Syntax SELECT a OR b
— calculates logical disjunction of a
and b
with the function or.
Logical Negation Operator
Syntax SELECT NOT a
— calculates logical negation of a
with the function not.
Conditional Operator
a ? b : c
– The if(a, b, c)
function.
Note:
The conditional operator calculates the values of b and c, then checks whether condition a is met, and then returns the corresponding value. If b
or C
is an arrayJoin() function, each row will be replicated regardless of the “a” condition.
Conditional Expression
CASE [x]
WHEN a THEN b
[WHEN ... THEN ...]
[ELSE c]
END
If x
is specified, then transform(x, [a, ...], [b, ...], c)
function is used. Otherwise – multiIf(a, b, ..., c)
.
If there is no ELSE c
clause in the expression, the default value is NULL
.
The transform
function does not work with NULL
.
Concatenation Operator
s1 || s2
– The concat(s1, s2) function.
Lambda Creation Operator
x -> expr
– The lambda(x, expr) function.
The following operators do not have a priority since they are brackets:
Array Creation Operator
[x1, ...]
– The array(x1, ...) function.
Tuple Creation Operator
(x1, x2, ...)
– The tuple(x2, x2, ...) function.
Associativity
All binary operators have left associativity. For example, 1 + 2 + 3
is transformed to plus(plus(1, 2), 3)
.
Sometimes this does not work the way you expect. For example, SELECT 4 > 2 > 3
will result in 0.
For efficiency, the and
and or
functions accept any number of arguments. The corresponding chains of AND
and OR
operators are transformed into a single call of these functions.
Checking for NULL
ClickHouse supports the IS NULL
and IS NOT NULL
operators.
IS NULL
- For Nullable type values, the
IS NULL
operator returns:1
, if the value isNULL
.0
otherwise.
- For other values, the
IS NULL
operator always returns0
.
Can be optimized by enabling the optimize_functions_to_subcolumns setting. With optimize_functions_to_subcolumns = 1
the function reads only null subcolumn instead of reading and processing the whole column data. The query SELECT n IS NULL FROM table
transforms to SELECT n.null FROM TABLE
.
SELECT x+100 FROM t_null WHERE y IS NULL
┌─plus(x, 100)─┐
│ 101 │
└──────────────┘
IS NOT NULL
- For Nullable type values, the
IS NOT NULL
operator returns:0
, if the value isNULL
.1
otherwise.
- For other values, the
IS NOT NULL
operator always returns1
.
SELECT * FROM t_null WHERE y IS NOT NULL
┌─x─┬─y─┐
│ 2 │ 3 │
└───┴───┘
Can be optimized by enabling the optimize_functions_to_subcolumns setting. With optimize_functions_to_subcolumns = 1
the function reads only null subcolumn instead of reading and processing the whole column data. The query SELECT n IS NOT NULL FROM table
transforms to SELECT NOT n.null FROM TABLE
.