ClickHouse/docs/fa/getting_started/example_datasets/ontime.md
BayoNet 85334a2836 Preparations for persian documentation publication (#3045)
* Preparations for publication of persian docs.

* Fix for language direction in data_types
2018-09-06 13:22:06 +03:00

394 lines
8.8 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<a name="example_datasets-ontime"></a>
<div dir="rtl" markdown="1">
# OnTime
دانلود داده ها:
</div>
```bash
for s in `seq 1987 2017`
do
for m in `seq 1 12`
do
wget http://transtats.bts.gov/PREZIP/On_Time_On_Time_Performance_${s}_${m}.zip
done
done
```
<div dir="rtl" markdown="1">
(از <https://github.com/Percona-Lab/ontime-airline-performance/blob/master/download.sh> )
ساخت جدول:
</div>
```sql
CREATE TABLE `ontime` (
`Year` UInt16,
`Quarter` UInt8,
`Month` UInt8,
`DayofMonth` UInt8,
`DayOfWeek` UInt8,
`FlightDate` Date,
`UniqueCarrier` FixedString(7),
`AirlineID` Int32,
`Carrier` FixedString(2),
`TailNum` String,
`FlightNum` String,
`OriginAirportID` Int32,
`OriginAirportSeqID` Int32,
`OriginCityMarketID` Int32,
`Origin` FixedString(5),
`OriginCityName` String,
`OriginState` FixedString(2),
`OriginStateFips` String,
`OriginStateName` String,
`OriginWac` Int32,
`DestAirportID` Int32,
`DestAirportSeqID` Int32,
`DestCityMarketID` Int32,
`Dest` FixedString(5),
`DestCityName` String,
`DestState` FixedString(2),
`DestStateFips` String,
`DestStateName` String,
`DestWac` Int32,
`CRSDepTime` Int32,
`DepTime` Int32,
`DepDelay` Int32,
`DepDelayMinutes` Int32,
`DepDel15` Int32,
`DepartureDelayGroups` String,
`DepTimeBlk` String,
`TaxiOut` Int32,
`WheelsOff` Int32,
`WheelsOn` Int32,
`TaxiIn` Int32,
`CRSArrTime` Int32,
`ArrTime` Int32,
`ArrDelay` Int32,
`ArrDelayMinutes` Int32,
`ArrDel15` Int32,
`ArrivalDelayGroups` Int32,
`ArrTimeBlk` String,
`Cancelled` UInt8,
`CancellationCode` FixedString(1),
`Diverted` UInt8,
`CRSElapsedTime` Int32,
`ActualElapsedTime` Int32,
`AirTime` Int32,
`Flights` Int32,
`Distance` Int32,
`DistanceGroup` UInt8,
`CarrierDelay` Int32,
`WeatherDelay` Int32,
`NASDelay` Int32,
`SecurityDelay` Int32,
`LateAircraftDelay` Int32,
`FirstDepTime` String,
`TotalAddGTime` String,
`LongestAddGTime` String,
`DivAirportLandings` String,
`DivReachedDest` String,
`DivActualElapsedTime` String,
`DivArrDelay` String,
`DivDistance` String,
`Div1Airport` String,
`Div1AirportID` Int32,
`Div1AirportSeqID` Int32,
`Div1WheelsOn` String,
`Div1TotalGTime` String,
`Div1LongestGTime` String,
`Div1WheelsOff` String,
`Div1TailNum` String,
`Div2Airport` String,
`Div2AirportID` Int32,
`Div2AirportSeqID` Int32,
`Div2WheelsOn` String,
`Div2TotalGTime` String,
`Div2LongestGTime` String,
`Div2WheelsOff` String,
`Div2TailNum` String,
`Div3Airport` String,
`Div3AirportID` Int32,
`Div3AirportSeqID` Int32,
`Div3WheelsOn` String,
`Div3TotalGTime` String,
`Div3LongestGTime` String,
`Div3WheelsOff` String,
`Div3TailNum` String,
`Div4Airport` String,
`Div4AirportID` Int32,
`Div4AirportSeqID` Int32,
`Div4WheelsOn` String,
`Div4TotalGTime` String,
`Div4LongestGTime` String,
`Div4WheelsOff` String,
`Div4TailNum` String,
`Div5Airport` String,
`Div5AirportID` Int32,
`Div5AirportSeqID` Int32,
`Div5WheelsOn` String,
`Div5TotalGTime` String,
`Div5LongestGTime` String,
`Div5WheelsOff` String,
`Div5TailNum` String
) ENGINE = MergeTree(FlightDate, (Year, FlightDate), 8192)
```
<div dir="rtl" markdown="1">
Load داده ها:
</div>
```bash
for i in *.zip; do echo $i; unzip -cq $i '*.csv' | sed 's/\.00//g' | clickhouse-client --host=example-perftest01j --query="INSERT INTO ontime FORMAT CSVWithNames"; done
```
<div dir="rtl" markdown="1">
query ها:
Q0.
</div>
```sql
select avg(c1) from (select Year, Month, count(*) as c1 from ontime group by Year, Month);
```
<div dir="rtl" markdown="1">
Q1. تعداد پروازهای به تفکیک روز از تاریخ 2000 تا 2008
</div>
```sql
SELECT DayOfWeek, count(*) AS c FROM ontime WHERE Year >= 2000 AND Year <= 2008 GROUP BY DayOfWeek ORDER BY c DESC;
```
<div dir="rtl" markdown="1">
Q2. تعداد پروازهای بیش از 10 دقیقه تاخیر خورده، گروه بندی براساس روزهای هفته از سال 2000 تا 2008
</div>
```sql
SELECT DayOfWeek, count(*) AS c FROM ontime WHERE DepDelay>10 AND Year >= 2000 AND Year <= 2008 GROUP BY DayOfWeek ORDER BY c DESC
```
<div dir="rtl" markdown="1">
Q3. تعداد تاخیرها براساس airport از سال 2000 تا 2008
</div>
```sql
SELECT Origin, count(*) AS c FROM ontime WHERE DepDelay>10 AND Year >= 2000 AND Year <= 2008 GROUP BY Origin ORDER BY c DESC LIMIT 10
```
<div dir="rtl" markdown="1">
Q4. تعداد تاخیرها براساس carrier در سال 78
</div>
```sql
SELECT Carrier, count(*) FROM ontime WHERE DepDelay>10 AND Year = 2007 GROUP BY Carrier ORDER BY count(*) DESC
```
<div dir="rtl" markdown="1">
Q5. درصد تاخیر ها براساس carrier در سال 2007
</div>
```sql
SELECT Carrier, c, c2, c*1000/c2 as c3
FROM
(
SELECT
Carrier,
count(*) AS c
FROM ontime
WHERE DepDelay>10
AND Year=2007
GROUP BY Carrier
)
ANY INNER JOIN
(
SELECT
Carrier,
count(*) AS c2
FROM ontime
WHERE Year=2007
GROUP BY Carrier
) USING Carrier
ORDER BY c3 DESC;
```
<div dir="rtl" markdown="1">
نسخه ی بهتر query
</div>
```sql
SELECT Carrier, avg(DepDelay > 10) * 1000 AS c3 FROM ontime WHERE Year = 2007 GROUP BY Carrier ORDER BY Carrier
```
<div dir="rtl" markdown="1">
Q6. مانند query قبلی اما برای طیف وسیعی از سال های 2000 تا 2008
</div>
```sql
SELECT Carrier, c, c2, c*1000/c2 as c3
FROM
(
SELECT
Carrier,
count(*) AS c
FROM ontime
WHERE DepDelay>10
AND Year >= 2000 AND Year <= 2008
GROUP BY Carrier
)
ANY INNER JOIN
(
SELECT
Carrier,
count(*) AS c2
FROM ontime
WHERE Year >= 2000 AND Year <= 2008
GROUP BY Carrier
) USING Carrier
ORDER BY c3 DESC;
```
<div dir="rtl" markdown="1">
نسخه ی بهتر query
</div>
```sql
SELECT Carrier, avg(DepDelay > 10) * 1000 AS c3 FROM ontime WHERE Year >= 2000 AND Year <= 2008 GROUP BY Carrier ORDER BY Carrier
```
<div dir="rtl" markdown="1">
Q7. درصد تاخیر بیش از 10 دقیقه پروازها به تفکیک سال
</div>
```sql
SELECT Year, c1/c2
FROM
(
select
Year,
count(*)*1000 as c1
from ontime
WHERE DepDelay>10
GROUP BY Year
)
ANY INNER JOIN
(
select
Year,
count(*) as c2
from ontime
GROUP BY Year
) USING (Year)
ORDER BY Year
```
<div dir="rtl" markdown="1">
نسخه ی بهتر query
</div>
```sql
SELECT Year, avg(DepDelay > 10) FROM ontime GROUP BY Year ORDER BY Year
```
<div dir="rtl" markdown="1">
Q8. مقصدهای پرطرفدار براساس تعداد اتصال های مستقیم شهرها برای سال 2000 تا 2010
</div>
```sql
SELECT DestCityName, uniqExact(OriginCityName) AS u FROM ontime WHERE Year >= 2000 and Year <= 2010 GROUP BY DestCityName ORDER BY u DESC LIMIT 10;
```
<div dir="rtl" markdown="1">
Q9.
</div>
```sql
select Year, count(*) as c1 from ontime group by Year;
```
<div dir="rtl" markdown="1">
Q10.
</div>
```sql
select
min(Year), max(Year), Carrier, count(*) as cnt,
sum(ArrDelayMinutes>30) as flights_delayed,
round(sum(ArrDelayMinutes>30)/count(*),2) as rate
FROM ontime
WHERE
DayOfWeek not in (6,7) and OriginState not in ('AK', 'HI', 'PR', 'VI')
and DestState not in ('AK', 'HI', 'PR', 'VI')
and FlightDate < '2010-01-01'
GROUP by Carrier
HAVING cnt > 100000 and max(Year) > 1990
ORDER by rate DESC
LIMIT 1000;
```
<div dir="rtl" markdown="1">
query های بیشتر:
</div>
```sql
SELECT avg(cnt) FROM (SELECT Year,Month,count(*) AS cnt FROM ontime WHERE DepDel15=1 GROUP BY Year,Month)
select avg(c1) from (select Year,Month,count(*) as c1 from ontime group by Year,Month)
SELECT DestCityName, uniqExact(OriginCityName) AS u FROM ontime GROUP BY DestCityName ORDER BY u DESC LIMIT 10;
SELECT OriginCityName, DestCityName, count() AS c FROM ontime GROUP BY OriginCityName, DestCityName ORDER BY c DESC LIMIT 10;
SELECT OriginCityName, count() AS c FROM ontime GROUP BY OriginCityName ORDER BY c DESC LIMIT 10;
```
<div dir="rtl" markdown="1">
این تست های performance توسط Vadim Tkachenko انجام شده است. برای اطلاعات بیشتر به لینک های زیر مراجعه کنید:
- <https://www.percona.com/blog/2009/10/02/analyzing-air-traffic-performance-with-infobright-and-monetdb/>
- <https://www.percona.com/blog/2009/10/26/air-traffic-queries-in-luciddb/>
- <https://www.percona.com/blog/2009/11/02/air-traffic-queries-in-infinidb-early-alpha/>
- <https://www.percona.com/blog/2014/04/21/using-apache-hadoop-and-impala-together-with-mysql-for-data-analysis/>
- <https://www.percona.com/blog/2016/01/07/apache-spark-with-air-ontime-performance-data/>
- <http://nickmakos.blogspot.ru/2012/08/analyzing-air-traffic-performance-with.html>
</div>