mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-06 07:32:27 +00:00
cd14f9ebcb
* split up select.md * array-join.md basic refactoring * distinct.md basic refactoring * format.md basic refactoring * from.md basic refactoring * group-by.md basic refactoring * having.md basic refactoring * additional index.md refactoring * into-outfile.md basic refactoring * join.md basic refactoring * limit.md basic refactoring * limit-by.md basic refactoring * order-by.md basic refactoring * prewhere.md basic refactoring * adjust operators/index.md links * adjust sample.md links * adjust more links * adjust operatots links * fix some links * adjust aggregate function article titles * basic refactor of remaining select clauses * absolute paths in make_links.sh * run make_links.sh * remove old select.md locations * translate docs/es * translate docs/fr * translate docs/fa * remove old operators.md location * change operators.md links * adjust links in docs/es * adjust links in docs/es * minor texts adjustments * wip * update machine translations to use new links * fix changelog * es build fixes * get rid of some select.md links * temporary adjust ru links * temporary adjust more ru links * improve curly brace handling * adjust ru as well * fa build fix * ru link fixes * zh link fixes * temporary disable part of anchor checks
21 lines
1.2 KiB
Markdown
21 lines
1.2 KiB
Markdown
---
|
|
machine_translated: true
|
|
machine_translated_rev: 72537a2d527c63c07aa5d2361a8829f3895cf2bd
|
|
toc_priority: 64
|
|
toc_title: "Funciones de aprendizaje autom\xE1tico"
|
|
---
|
|
|
|
# Funciones de aprendizaje automático {#machine-learning-functions}
|
|
|
|
## evalMLMethod (predicción) {#machine_learning_methods-evalmlmethod}
|
|
|
|
Predicción utilizando modelos de regresión ajustados utiliza `evalMLMethod` función. Ver enlace en `linearRegression`.
|
|
|
|
### Regresión lineal estocástica {#stochastic-linear-regression}
|
|
|
|
El [stochasticLinearRegression](../../sql-reference/aggregate-functions/reference.md#agg_functions-stochasticlinearregression) la función agregada implementa el método de descenso de gradiente estocástico utilizando el modelo lineal y la función de pérdida MSE. Utilizar `evalMLMethod` para predecir sobre nuevos datos.
|
|
|
|
### Regresión logística estocástica {#stochastic-logistic-regression}
|
|
|
|
El [stochasticLogisticRegression](../../sql-reference/aggregate-functions/reference.md#agg_functions-stochasticlogisticregression) la función de agregado implementa el método de descenso de gradiente estocástico para el problema de clasificación binaria. Utilizar `evalMLMethod` para predecir sobre nuevos datos.
|