mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-15 10:52:30 +00:00
484 lines
13 KiB
C++
484 lines
13 KiB
C++
#include <iostream>
|
|
#include <string>
|
|
|
|
#include <fmt/format.h>
|
|
|
|
#include <Core/Types.h>
|
|
#include <Common/PODArray.h>
|
|
#include <Common/HashTable/FixedHashMap.h>
|
|
#include <Common/Arena.h>
|
|
#include <Common/Stopwatch.h>
|
|
|
|
|
|
/** This test program evaluates different solutions for a simple degenerate task:
|
|
* Aggregate data by UInt8 key, calculate "avg" function on Float values.
|
|
*
|
|
* It tests the overhead of various data structures in comparison to the minimal code doing the same task.
|
|
* It also tests what does it cost to access aggregation state via single pointer indirection.
|
|
* Also it evaluate various ways to unroll the loop.
|
|
* And finally it compares with one solution involving bucket sort.
|
|
*
|
|
* How to use:
|
|
*
|
|
* for i in {1..10}; do src/Common/tests/average 100000000 1; done
|
|
*
|
|
* You will find the numbers for various options below.
|
|
*/
|
|
|
|
|
|
using namespace DB;
|
|
|
|
using Float = Float32;
|
|
|
|
struct State
|
|
{
|
|
Float sum = 0;
|
|
size_t count = 0;
|
|
|
|
void add(Float value)
|
|
{
|
|
sum += value;
|
|
++count;
|
|
}
|
|
|
|
Float result() const
|
|
{
|
|
return sum / count;
|
|
}
|
|
|
|
bool operator!() const
|
|
{
|
|
return !count;
|
|
}
|
|
};
|
|
|
|
using StatePtr = State *;
|
|
|
|
|
|
Float NO_INLINE baseline_baseline(const PODArray<UInt8> & keys, const PODArray<Float> & values)
|
|
{
|
|
Arena arena;
|
|
HashMap<UInt8, StatePtr> map;
|
|
|
|
size_t size = keys.size();
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
StatePtr & place = map[keys[i]];
|
|
if (unlikely(!place))
|
|
place = new (arena.alloc<State>()) State();
|
|
|
|
place->add(values[i]);
|
|
}
|
|
|
|
return map[0]->result();
|
|
}
|
|
|
|
|
|
Float NO_INLINE baseline(const PODArray<UInt8> & keys, const PODArray<Float> & values)
|
|
{
|
|
Arena arena;
|
|
FixedHashMap<UInt8, StatePtr> map;
|
|
|
|
size_t size = keys.size();
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
StatePtr & place = map[keys[i]];
|
|
if (unlikely(!place))
|
|
place = new (arena.alloc<State>()) State();
|
|
|
|
place->add(values[i]);
|
|
}
|
|
|
|
return map[0]->result();
|
|
}
|
|
|
|
|
|
template <typename Key, typename Mapped>
|
|
using FixedImplicitZeroHashMap = FixedHashMap<
|
|
Key,
|
|
Mapped,
|
|
FixedHashMapImplicitZeroCell<Key, Mapped>>;
|
|
|
|
Float NO_INLINE implicit_zero(const PODArray<UInt8> & keys, const PODArray<Float> & values)
|
|
{
|
|
Arena arena;
|
|
FixedImplicitZeroHashMap<UInt8, StatePtr> map;
|
|
|
|
size_t size = keys.size();
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
StatePtr & place = map[keys[i]];
|
|
if (unlikely(!place))
|
|
place = new (arena.alloc<State>()) State();
|
|
|
|
place->add(values[i]);
|
|
}
|
|
|
|
return map[0]->result();
|
|
}
|
|
|
|
|
|
template <typename Key, typename Mapped>
|
|
using FixedHashMapWithCalculatedSize = FixedHashMap<
|
|
Key,
|
|
Mapped,
|
|
FixedHashMapCell<Key, Mapped>,
|
|
FixedHashTableCalculatedSize<FixedHashMapCell<Key, Mapped>>>;
|
|
|
|
Float NO_INLINE calculated_size(const PODArray<UInt8> & keys, const PODArray<Float> & values)
|
|
{
|
|
Arena arena;
|
|
FixedHashMapWithCalculatedSize<UInt8, StatePtr> map;
|
|
|
|
size_t size = keys.size();
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
StatePtr & place = map[keys[i]];
|
|
if (unlikely(!place))
|
|
place = new (arena.alloc<State>()) State();
|
|
|
|
place->add(values[i]);
|
|
}
|
|
|
|
return map[0]->result();
|
|
}
|
|
|
|
|
|
Float NO_INLINE implicit_zero_and_calculated_size(const PODArray<UInt8> & keys, const PODArray<Float> & values)
|
|
{
|
|
Arena arena;
|
|
FixedImplicitZeroHashMapWithCalculatedSize<UInt8, StatePtr> map;
|
|
|
|
size_t size = keys.size();
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
StatePtr & place = map[keys[i]];
|
|
if (unlikely(!place))
|
|
place = new (arena.alloc<State>()) State();
|
|
|
|
place->add(values[i]);
|
|
}
|
|
|
|
return map[0]->result();
|
|
}
|
|
|
|
Float NO_INLINE init_out_of_the_loop(const PODArray<UInt8> & keys, const PODArray<Float> & values)
|
|
{
|
|
Arena arena;
|
|
FixedImplicitZeroHashMapWithCalculatedSize<UInt8, StatePtr> map;
|
|
|
|
for (size_t i = 0; i < 256; ++i)
|
|
map[i] = new (arena.alloc<State>()) State();
|
|
|
|
size_t size = keys.size();
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
StatePtr & place = map[keys[i]];
|
|
place->add(values[i]);
|
|
}
|
|
|
|
return map[0]->result();
|
|
}
|
|
|
|
Float NO_INLINE embedded_states(const PODArray<UInt8> & keys, const PODArray<Float> & values)
|
|
{
|
|
FixedImplicitZeroHashMapWithCalculatedSize<UInt8, State> map;
|
|
|
|
size_t size = keys.size();
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
State & place = map[keys[i]];
|
|
place.add(values[i]);
|
|
}
|
|
|
|
return map[0].result();
|
|
}
|
|
|
|
Float NO_INLINE simple_lookup_table(const PODArray<UInt8> & keys, const PODArray<Float> & values)
|
|
{
|
|
Arena arena;
|
|
StatePtr map[256]{};
|
|
|
|
size_t size = keys.size();
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
StatePtr & place = map[keys[i]];
|
|
if (unlikely(!place))
|
|
place = new (arena.alloc<State>()) State();
|
|
|
|
place->add(values[i]);
|
|
}
|
|
|
|
return map[0]->result();
|
|
}
|
|
|
|
Float NO_INLINE simple_lookup_table_embedded_states(const PODArray<UInt8> & keys, const PODArray<Float> & values)
|
|
{
|
|
State map[256]{};
|
|
|
|
size_t size = keys.size();
|
|
for (size_t i = 0; i < size; ++i)
|
|
map[keys[i]].add(values[i]);
|
|
|
|
return map[0].result();
|
|
}
|
|
|
|
template <size_t UNROLL_COUNT>
|
|
Float NO_INLINE unrolled(const PODArray<UInt8> & keys, const PODArray<Float> & values)
|
|
{
|
|
Arena arena;
|
|
FixedImplicitZeroHashMapWithCalculatedSize<UInt8, StatePtr> map;
|
|
|
|
size_t size = keys.size();
|
|
size_t i = 0;
|
|
|
|
size_t size_unrolled = size / UNROLL_COUNT * UNROLL_COUNT;
|
|
for (; i < size_unrolled; i += UNROLL_COUNT)
|
|
{
|
|
StatePtr places[UNROLL_COUNT];
|
|
for (size_t j = 0; j < UNROLL_COUNT; ++j)
|
|
{
|
|
StatePtr & place = map[keys[i + j]];
|
|
if (unlikely(!place))
|
|
place = new (arena.alloc<State>()) State();
|
|
|
|
places[j] = place;
|
|
}
|
|
|
|
for (size_t j = 0; j < UNROLL_COUNT; ++j)
|
|
places[j]->add(values[i + j]);
|
|
}
|
|
|
|
for (; i < size; ++i)
|
|
{
|
|
StatePtr & place = map[keys[i]];
|
|
if (unlikely(!place))
|
|
place = new (arena.alloc<State>()) State();
|
|
|
|
place->add(values[i]);
|
|
}
|
|
|
|
return map[0]->result();
|
|
}
|
|
|
|
template <size_t UNROLL_COUNT>
|
|
Float NO_INLINE simple_lookup_table_unrolled(const PODArray<UInt8> & keys, const PODArray<Float> & values)
|
|
{
|
|
Arena arena;
|
|
StatePtr map[256]{};
|
|
|
|
size_t size = keys.size();
|
|
size_t i = 0;
|
|
|
|
size_t size_unrolled = size / UNROLL_COUNT * UNROLL_COUNT;
|
|
for (; i < size_unrolled; i += UNROLL_COUNT)
|
|
{
|
|
StatePtr places[UNROLL_COUNT];
|
|
for (size_t j = 0; j < UNROLL_COUNT; ++j)
|
|
{
|
|
StatePtr & place = map[keys[i + j]];
|
|
if (unlikely(!place))
|
|
place = new (arena.alloc<State>()) State();
|
|
|
|
places[j] = place;
|
|
}
|
|
|
|
for (size_t j = 0; j < UNROLL_COUNT; ++j)
|
|
places[j]->add(values[i + j]);
|
|
}
|
|
|
|
for (; i < size; ++i)
|
|
{
|
|
StatePtr & place = map[keys[i]];
|
|
if (unlikely(!place))
|
|
place = new (arena.alloc<State>()) State();
|
|
|
|
place->add(values[i]);
|
|
}
|
|
|
|
return map[0]->result();
|
|
}
|
|
|
|
template <size_t UNROLL_COUNT>
|
|
Float NO_INLINE embedded_states_unrolled(const PODArray<UInt8> & keys, const PODArray<Float> & values)
|
|
{
|
|
FixedImplicitZeroHashMapWithCalculatedSize<UInt8, State> map;
|
|
|
|
size_t size = keys.size();
|
|
size_t i = 0;
|
|
|
|
size_t size_unrolled = size / UNROLL_COUNT * UNROLL_COUNT;
|
|
for (; i < size_unrolled; i += UNROLL_COUNT)
|
|
{
|
|
StatePtr places[UNROLL_COUNT];
|
|
for (size_t j = 0; j < UNROLL_COUNT; ++j)
|
|
places[j] = &map[keys[i + j]];
|
|
|
|
for (size_t j = 0; j < UNROLL_COUNT; ++j)
|
|
places[j]->add(values[i + j]);
|
|
}
|
|
|
|
for (; i < size; ++i)
|
|
{
|
|
State & place = map[keys[i]];
|
|
place.add(values[i]);
|
|
}
|
|
|
|
return map[0].result();
|
|
}
|
|
|
|
template <size_t UNROLL_COUNT>
|
|
Float NO_INLINE simple_lookup_table_embedded_states_unrolled(const PODArray<UInt8> & keys, const PODArray<Float> & values)
|
|
{
|
|
State map[256]{};
|
|
|
|
size_t size = keys.size();
|
|
size_t i = 0;
|
|
|
|
size_t size_unrolled = size / UNROLL_COUNT * UNROLL_COUNT;
|
|
for (; i < size_unrolled; i += UNROLL_COUNT)
|
|
{
|
|
StatePtr places[UNROLL_COUNT];
|
|
for (size_t j = 0; j < UNROLL_COUNT; ++j)
|
|
places[j] = &map[keys[i + j]];
|
|
|
|
for (size_t j = 0; j < UNROLL_COUNT; ++j)
|
|
places[j]->add(values[i + j]);
|
|
}
|
|
|
|
for (; i < size; ++i)
|
|
{
|
|
State & place = map[keys[i]];
|
|
place.add(values[i]);
|
|
}
|
|
|
|
return map[0].result();
|
|
}
|
|
|
|
|
|
template <size_t UNROLL_COUNT>
|
|
Float NO_INLINE microsort(const PODArray<UInt8> & keys, const PODArray<Float> & values)
|
|
{
|
|
State map[256]{};
|
|
|
|
size_t size = keys.size();
|
|
|
|
/// Calculate histograms of keys.
|
|
|
|
using CountType = UInt32;
|
|
|
|
static constexpr size_t HISTOGRAM_SIZE = 256;
|
|
|
|
CountType count[HISTOGRAM_SIZE * UNROLL_COUNT]{};
|
|
size_t unrolled_size = size / UNROLL_COUNT * UNROLL_COUNT;
|
|
|
|
for (const UInt8 * elem = keys.data(); elem < keys.data() + unrolled_size; elem += UNROLL_COUNT)
|
|
for (size_t i = 0; i < UNROLL_COUNT; ++i)
|
|
++count[i * HISTOGRAM_SIZE + elem[i]];
|
|
|
|
for (const UInt8 * elem = keys.data() + unrolled_size; elem < keys.data() + size; ++elem)
|
|
++count[*elem];
|
|
|
|
for (size_t i = 0; i < HISTOGRAM_SIZE; ++i)
|
|
for (size_t j = 1; j < UNROLL_COUNT; ++j)
|
|
count[i] += count[j * HISTOGRAM_SIZE + i];
|
|
|
|
/// Row indices in a batch for each key.
|
|
|
|
PODArray<UInt32> indices(size);
|
|
UInt32 * positions[HISTOGRAM_SIZE];
|
|
positions[0] = indices.data();
|
|
|
|
for (size_t i = 1; i < HISTOGRAM_SIZE; ++i)
|
|
positions[i] = positions[i - 1] + count[i - 1];
|
|
|
|
for (size_t i = 0; i < size; ++i)
|
|
*positions[keys[i]]++ = i;
|
|
|
|
/// Update states.
|
|
|
|
UInt32 * idx = indices.data();
|
|
for (size_t i = 0; i < HISTOGRAM_SIZE; ++i)
|
|
for (; idx < positions[i]; ++idx)
|
|
map[i].add(values[*idx]);
|
|
|
|
return map[0].result();
|
|
}
|
|
|
|
|
|
int main(int argc, char ** argv)
|
|
{
|
|
size_t size = argc > 1 ? std::stoull(argv[1]) : 1000000000;
|
|
size_t variant = argc > 2 ? std::stoull(argv[2]) : 1;
|
|
|
|
PODArray<UInt8> keys(size);
|
|
PODArray<Float> values(size);
|
|
|
|
/// Fill source data
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
keys[i] = __builtin_ctz(i + 1); /// Make keys to have just slightly more realistic distribution.
|
|
values[i] = i; /// The distribution of values does not affect execution speed.
|
|
}
|
|
|
|
/// Aggregate
|
|
Stopwatch watch;
|
|
Float res;
|
|
|
|
switch (variant)
|
|
{
|
|
case 0: res = baseline(keys, values); break;
|
|
case 1: res = implicit_zero(keys, values); break;
|
|
case 2: res = calculated_size(keys, values); break;
|
|
case 3: res = implicit_zero_and_calculated_size(keys, values); break;
|
|
case 4: res = init_out_of_the_loop(keys, values); break;
|
|
case 5: res = embedded_states(keys, values); break;
|
|
case 6: res = simple_lookup_table(keys, values); break;
|
|
case 7: res = simple_lookup_table_embedded_states(keys, values); break;
|
|
case 8: res = microsort<1>(keys, values); break;
|
|
case 9: res = baseline_baseline(keys, values); break;
|
|
|
|
case 32: res = unrolled<2>(keys, values); break;
|
|
case 34: res = unrolled<4>(keys, values); break;
|
|
case 36: res = unrolled<6>(keys, values); break;
|
|
case 38: res = unrolled<8>(keys, values); break;
|
|
case 316: res = unrolled<16>(keys, values); break;
|
|
|
|
case 52: res = embedded_states_unrolled<2>(keys, values); break;
|
|
case 54: res = embedded_states_unrolled<4>(keys, values); break;
|
|
case 56: res = embedded_states_unrolled<6>(keys, values); break;
|
|
case 58: res = embedded_states_unrolled<8>(keys, values); break;
|
|
case 516: res = embedded_states_unrolled<16>(keys, values); break;
|
|
|
|
case 62: res = simple_lookup_table_unrolled<2>(keys, values); break;
|
|
case 64: res = simple_lookup_table_unrolled<4>(keys, values); break;
|
|
case 66: res = simple_lookup_table_unrolled<6>(keys, values); break;
|
|
case 68: res = simple_lookup_table_unrolled<8>(keys, values); break;
|
|
case 616: res = simple_lookup_table_unrolled<16>(keys, values); break;
|
|
|
|
case 72: res = simple_lookup_table_embedded_states_unrolled<2>(keys, values); break;
|
|
case 74: res = simple_lookup_table_embedded_states_unrolled<4>(keys, values); break;
|
|
case 76: res = simple_lookup_table_embedded_states_unrolled<6>(keys, values); break;
|
|
case 78: res = simple_lookup_table_embedded_states_unrolled<8>(keys, values); break;
|
|
case 716: res = simple_lookup_table_embedded_states_unrolled<16>(keys, values); break;
|
|
|
|
case 82: res = microsort<2>(keys, values); break;
|
|
case 84: res = microsort<4>(keys, values); break;
|
|
case 86: res = microsort<6>(keys, values); break;
|
|
case 88: res = microsort<8>(keys, values); break;
|
|
case 816: res = microsort<16>(keys, values); break;
|
|
|
|
default: break;
|
|
}
|
|
|
|
watch.stop();
|
|
fmt::print("Aggregated (res = {}) in {} sec., {} million rows/sec., {} MiB/sec.\n",
|
|
res,
|
|
watch.elapsedSeconds(),
|
|
size_t(size / watch.elapsedSeconds() / 1000000),
|
|
size_t(size * (sizeof(Float) + sizeof(UInt8)) / watch.elapsedSeconds() / 1000000));
|
|
|
|
return 0;
|
|
}
|
|
|