ClickHouse/docs/ru/operations/table_engines/mergetree.md
BayoNet c4f1038efc DOCAPI-4148: EN review, RU translation. MergeTree partially monotonic keys (#6085)
* Update http.md

* Update settings.md

* Update mergetree.md

* DOCAPI-6213: RU translastion.

* DOCAPI-4148: 4148
2019-07-29 13:19:30 +03:00

30 KiB
Raw Blame History

MergeTree

Движок MergeTree, а также другие движки этого семейства (*MergeTree) — это наиболее функциональные движки таблиц ClickHousе.

Основная идея, заложенная в основу движков семейства MergeTree следующая. Когда у вас есть огромное количество данных, которые должны быть вставлены в таблицу, вы должны быстро записать их по частям, а затем объединить части по некоторым правилам в фоновом режиме. Этот метод намного эффективнее, чем постоянная перезапись данных в хранилище при вставке.

Основные возможности:

  • Хранит данные, отсортированные по первичному ключу.

    Это позволяет создавать разреженный индекс небольшого объёма, который позволяет быстрее находить данные.

  • Позволяет оперировать партициями, если задан ключ партиционирования.

    ClickHouse поддерживает отдельные операции с партициями, которые работают эффективнее, чем общие операции с этим же результатом над этими же данными. Также, ClickHouse автоматически отсекает данные по партициям там, где ключ партиционирования указан в запросе. Это также увеличивает эффективность выполнения запросов.

  • Поддерживает репликацию данных.

    Для этого используется семейство таблиц ReplicatedMergeTree. Подробнее читайте в разделе Репликация данных.

  • Поддерживает сэмплирование данных.

    При необходимости можно задать способ сэмплирования данных в таблице.

!!! info Движок Merge не относится к семейству *MergeTree.

Создание таблицы

CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1] [TTL expr1],
    name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2] [TTL expr2],
    ...
    INDEX index_name1 expr1 TYPE type1(...) GRANULARITY value1,
    INDEX index_name2 expr2 TYPE type2(...) GRANULARITY value2
) ENGINE = MergeTree()
[PARTITION BY expr]
[ORDER BY expr]
[PRIMARY KEY expr]
[SAMPLE BY expr]
[SETTINGS name=value, ...]

Описание параметров запроса смотрите в описании запроса.

Секции запроса

  • ENGINE — Имя и параметры движка. ENGINE = MergeTree(). MergeTree не имеет параметров.

  • PARTITION BYключ партиционирования.

    Для партиционирования по месяцам используйте выражение toYYYYMM(date_column), где date_column — столбец с датой типа Date. В этом случае имена партиций имеют формат "YYYYMM".

  • ORDER BY — ключ сортировки.

    Кортеж столбцов или произвольных выражений. Пример: ORDER BY (CounterID, EventDate).

  • PRIMARY KEY — первичный ключ, если он отличается от ключа сортировки.

    По умолчанию первичный ключ совпадает с ключом сортировки (который задаётся секцией ORDER BY.) Поэтому в большинстве случаев секцию PRIMARY KEY отдельно указывать не нужно.

  • SAMPLE BY — выражение для сэмплирования.

    Если используется выражение для сэмплирования, то первичный ключ должен содержать его. Пример: SAMPLE BY intHash32(UserID) ORDER BY (CounterID, EventDate, intHash32(UserID)).

  • TTL - выражение для задания времени хранения строк.

    Оно должно зависеть от стобца типа Date или DateTime и в качестве результата вычислять столбец типа Date или DateTime. Пример: TTL date + INTERVAL 1 DAY

    Подробнее смотрите в TTL для стоблцов и таблиц

  • SETTINGS — дополнительные параметры, регулирующие поведение MergeTree:

    • index_granularity — гранулярность индекса. Число строк данных между «засечками» индекса. По умолчанию — 8192. Список всех доступных параметров можно посмотреть в MergeTreeSettings.h.
    • min_merge_bytes_to_use_direct_io — минимальный объем данных, необходимый для прямого (небуферизованного) чтения/записи (direct I/O) на диск. При слиянии частей данных ClickHouse вычисляет общий объем хранения всех данных, подлежащих слиянию. Если общий объем хранения всех данных для чтения превышает min_bytes_to_use_direct_io байт, тогда ClickHouse использует флаг O_DIRECT при чтении данных с диска. Если min_merge_bytes_to_use_direct_io = 0, тогда прямой ввод-вывод отключен. Значение по умолчанию: 10 * 1024 * 1024 * 1024 байт.
    • merge_with_ttl_timeout - Минимальное время в секундах для повторного выполнения слияний с TTL. По умолчанию - 86400 (1 день).

Пример задания секций

ENGINE MergeTree() PARTITION BY toYYYYMM(EventDate) ORDER BY (CounterID, EventDate, intHash32(UserID)) SAMPLE BY intHash32(UserID) SETTINGS index_granularity=8192

В примере мы устанавливаем партиционирование по месяцам.

Также мы задаем выражение для сэмплирования в виде хэша по идентификатору посетителя. Это позволяет псевдослучайным образом перемешать данные в таблице для каждого CounterID и EventDate. Если при выборке данных задать секцию SAMPLE, то ClickHouse вернёт равномерно-псевдослучайную выборку данных для подмножества посетителей.

index_granularity можно было не указывать, поскольку 8192 — это значение по умолчанию.

Устаревший способ создания таблицы

!!! attention Не используйте этот способ в новых проектах и по возможности переведите старые проекты на способ, описанный выше.

CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],
    name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],
    ...
) ENGINE [=] MergeTree(date-column [, sampling_expression], (primary, key), index_granularity)

Параметры MergeTree()

  • date-column — имя столбца с типом Date. На основе этого столбца ClickHouse автоматически создаёт партиции по месяцам. Имена партиций имеют формат "YYYYMM".
  • sampling_expression — выражение для сэмплирования.
  • (primary, key) — первичный ключ. Тип — [Tuple()](../../data_types/tuple.md- index_granularity — гранулярность индекса. Число строк данных между «засечками» индекса. Для большинства задач подходит значение 8192.

Пример

MergeTree(EventDate, intHash32(UserID), (CounterID, EventDate, intHash32(UserID)), 8192)

Движок MergeTree сконфигурирован таким же образом, как и в примере выше для основного способа конфигурирования движка.

Хранение данных

Таблица состоит из кусков данных (data parts), отсортированных по первичному ключу.

При вставке в таблицу создаются отдельные куски данных, каждый из которых лексикографически отсортирован по первичному ключу. Например, если первичный ключ — (CounterID, Date), то данные в куске будут лежать в порядке CounterID, а для каждого CounterID в порядке Date.

Данные, относящиеся к разным партициям, разбиваются на разные куски. В фоновом режиме ClickHouse выполняет слияния (merge) кусков данных для более эффективного хранения. Куски, относящиеся к разным партициям не объединяются. Механизм слияния не гарантирует, что все строки с одинаковым первичным ключом окажутся в одном куске.

Для каждого куска данных ClickHouse создаёт индексный файл, который содержит значение первичного ключа для каждой индексной строки («засечка»). Номера строк индекса определяются как n * index_granularity. Максимальное значение n равно целой части деления общего числа строк на index_granularity. Для каждого столбца "засечки" также записываются для тех же строк индекса, что и первичный ключ. Эти "засечки" позволяют находить данные непосредственно в столбцах.

Вы можете использовать одну большую таблицу, постоянно добавляя в неё данные пачками, именно для этого предназначен движок MergeTree.

Первичные ключи и индексы в запросах

Рассмотрим первичный ключ — (CounterID, Date). В этом случае сортировку и индекс можно проиллюстрировать следующим образом:

Whole data:     [-------------------------------------------------------------------------]
CounterID:      [aaaaaaaaaaaaaaaaaabbbbcdeeeeeeeeeeeeefgggggggghhhhhhhhhiiiiiiiiikllllllll]
Date:           [1111111222222233331233211111222222333211111112122222223111112223311122333]
Marks:           |      |      |      |      |      |      |      |      |      |      |
                a,1    a,2    a,3    b,3    e,2    e,3    g,1    h,2    i,1    i,3    l,3
Marks numbers:   0      1      2      3      4      5      6      7      8      9      10

Если в запросе к данным указать:

  • CounterID IN ('a', 'h'), то сервер читает данные в диапазонах засечек [0, 3) и [6, 8).
  • CounterID IN ('a', 'h') AND Date = 3, то сервер читает данные в диапазонах засечек [1, 3) и [7, 8).
  • Date = 3, то сервер читает данные в диапазоне засечек [1, 10].

Примеры выше показывают, что использование индекса всегда эффективнее, чем full scan.

Разреженный индекс допускает чтение лишних строк. При чтении одного диапазона первичного ключа, может быть прочитано до index_granularity * 2 лишних строк в каждом блоке данных. В большинстве случаев ClickHouse не теряет производительности при index_granularity = 8192.

Разреженность индекса позволяет работать даже с очень большим количеством строк в таблицах, поскольку такой индекс всегда помещается в оперативную память компьютера.

ClickHouse не требует уникального первичного ключа. Можно вставить много строк с одинаковым первичным ключом.

Выбор первичного ключа

Количество столбцов в первичном ключе не ограничено явным образом. В зависимости от структуры данных в первичный ключ можно включать больше или меньше столбцов. Это может:

  • Увеличить эффективность индекса.

    Пусть первичный ключ — (a, b), тогда добавление ещё одного столбца c повысит эффективность, если выполнены условия:

    • Есть запросы с условием на столбец c.
    • Часто встречаются достаточно длинные (в несколько раз больше index_granularity) диапазоны данных с одинаковыми значениями (a, b). Иначе говоря, когда добавление ещё одного столбца позволит пропускать достаточно длинные диапазоны данных.
  • Улучшить сжатие данных.

    ClickHouse сортирует данные по первичному ключу, поэтому чем выше однородность, тем лучше сжатие.

  • Обеспечить дополнительную логику при слиянии кусков данных в движках CollapsingMergeTree и SummingMergeTree.

    В этом случае имеет смысл указать отдельный ключ сортировки, отличающийся от первичного ключа.

Длинный первичный ключ будет негативно влиять на производительность вставки и потребление памяти, однако на производительность ClickHouse при запросах SELECT лишние столбцы в первичном ключе не влияют.

Первичный ключ, отличный от ключа сортировки

Существует возможность задать первичный ключ (выражение, значения которого будут записаны в индексный файл для каждой засечки), отличный от ключа сортировки (выражение, по которому будут упорядочены строки в кусках данных). Кортеж выражения первичного ключа при этом должен быть префиксом кортежа выражения ключа сортировки.

Данная возможность особенно полезна при использовании движков SummingMergeTree и AggregatingMergeTree. В типичном сценарии использования этих движков таблица содержит столбцы двух типов: измерения (dimensions) и меры (measures). Типичные запросы агрегируют значения столбцов-мер с произвольной группировкой и фильтрацией по измерениям. Так как SummingMergeTree и AggregatingMergeTree производят фоновую агрегацию строк с одинаковым значением ключа сортировки, приходится добавлять в него все столбцы-измерения. В результате выражение ключа содержит большой список столбцов, который приходится постоянно расширять при добавлении новых измерений.

В этом сценарии имеет смысл оставить в первичном ключе всего несколько столбцов, которые обеспечат эффективную фильтрацию по индексу, а остальные столбцы-измерения добавить в выражение ключа сортировки.

ALTER ключа сортировки — лёгкая операция, так как при одновременном добавлении нового столбца в таблицу и ключ сортировки не нужно изменять данные кусков (они остаются упорядоченными и по новому выражению ключа).

Использование индексов и партиций в запросах

Для запросов SELECT ClickHouse анализирует возможность использования индекса. Индекс может использоваться, если в секции WHERE/PREWHERE, в качестве одного из элементов конъюнкции, или целиком, есть выражение, представляющее операции сравнения на равенства, неравенства, а также IN или LIKE с фиксированным префиксом, над столбцами или выражениями, входящими в первичный ключ или ключ партиционирования, либо над некоторыми частично монотонными функциями от этих столбцов, а также логические связки над такими выражениями.

Таким образом, обеспечивается возможность быстро выполнять запросы по одному или многим диапазонам первичного ключа. Например, в указанном примере будут быстро работать запросы для конкретного счётчика; для конкретного счётчика и диапазона дат; для конкретного счётчика и даты, для нескольких счётчиков и диапазона дат и т. п.

Рассмотрим движок сконфигурированный следующим образом:

ENGINE MergeTree() PARTITION BY toYYYYMM(EventDate) ORDER BY (CounterID, EventDate) SETTINGS index_granularity=8192

В этом случае в запросах:

SELECT count() FROM table WHERE EventDate = toDate(now()) AND CounterID = 34
SELECT count() FROM table WHERE EventDate = toDate(now()) AND (CounterID = 34 OR CounterID = 42)
SELECT count() FROM table WHERE ((EventDate >= toDate('2014-01-01') AND EventDate <= toDate('2014-01-31')) OR EventDate = toDate('2014-05-01')) AND CounterID IN (101500, 731962, 160656) AND (CounterID = 101500 OR EventDate != toDate('2014-05-01'))

ClickHouse будет использовать индекс по первичному ключу для отсечения не подходящих данных, а также ключ партиционирования по месяцам для отсечения партиций, которые находятся в не подходящих диапазонах дат.

Запросы выше показывают, что индекс используется даже для сложных выражений. Чтение из таблицы организовано так, что использование индекса не может быть медленнее, чем full scan.

В примере ниже индекс не может использоваться.

SELECT count() FROM table WHERE CounterID = 34 OR URL LIKE '%upyachka%'

Чтобы проверить, сможет ли ClickHouse использовать индекс при выполнении запроса, используйте настройки force_index_by_date и force_primary_key.

Ключ партиционирования по месяцам обеспечивает чтение только тех блоков данных, которые содержат даты из нужного диапазона. При этом блок данных может содержать данные за многие даты (до целого месяца). В пределах одного блока данные упорядочены по первичному ключу, который может не содержать дату в качестве первого столбца. В связи с этим, при использовании запроса с указанием условия только на дату, но не на префикс первичного ключа, будет читаться данных больше, чем за одну дату.

Использование индекса для частично-монотонных первичных ключей

Рассмотрим, например, дни месяца. Они образуют последовательность монотонную в течение одного месяца, но не монотонную на более длительных периодах. Это частично-монотонная последовательность. Если пользователь создаёт таблицу с частично-монотонным первичным ключом, ClickHouse как обычно создаёт разреженный индекс. Когда пользователь выбирает данные из такого рода таблиц, ClickHouse анализирует условия запроса. Если пользователь хочет получить данные между двумя метками индекса, и обе эти метки находятся внутри одного месяца, ClickHouse может использовать индекс в данном конкретном случае, поскольку он может рассчитать расстояние между параметрами запроса и индексными метками.

ClickHouse не может использовать индекс, если значения первичного ключа в диапазоне параметров запроса не представляют собой монотонную последовательность. В этом случае ClickHouse использует метод полного сканирования.

ClickHouse использует эту логику не только для последовательностей дней месяца, но и для любого частично-монотонного первичного ключа.

Дополнительные индексы (Экспериментальная функциональность)

Для использования требуется установить настройку allow_experimental_data_skipping_indices в 1. (запустить SET allow_experimental_data_skipping_indices = 1).

Объявление индексов при определении столбцов в запросе CREATE.

INDEX index_name expr TYPE type(...) GRANULARITY granularity_value

Для таблиц семейства *MergeTree можно задать дополнительные индексы в секции столбцов.

Индексы агрегируют для заданного выражения некоторые данные, а потом при SELECT запросе используют для пропуска блоков данных (пропускаемый блок состоит из гранул данных в количестве равном гранулярности данного индекса), на которых секция WHERE не может быть выполнена, тем самым уменьшая объем данных читаемых с диска.

Пример

CREATE TABLE table_name
(
    u64 UInt64,
    i32 Int32,
    s String,
    ...
    INDEX a (u64 * i32, s) TYPE minmax GRANULARITY 3,
    INDEX b (u64 * length(s)) TYPE set(1000) GRANULARITY 4
) ENGINE = MergeTree()
...

Эти индексы смогут использоваться для оптимизации следующих запросов

SELECT count() FROM table WHERE s < 'z'
SELECT count() FROM table WHERE u64 * i32 == 10 AND u64 * length(s) >= 1234

Доступные индексы

  • minmax Хранит минимум и максимум выражения (если выражение - tuple, то для каждого элемента tuple), используя их для пропуска блоков аналогично первичному ключу.

  • set(max_rows) Хранит уникальные значения выражения на блоке в количестве не более max_rows (если max_rows = 0, то ограничений нет), используя их для пропуска блоков, оценивая выполнимость WHERE выражения на хранимых данных.

Примеры

INDEX b (u64 * length(str), i32 + f64 * 100, date, str) TYPE minmax GRANULARITY 4
INDEX b (u64 * length(str), i32 + f64 * 100, date, str) TYPE set(100) GRANULARITY 4

Конкурентный доступ к данным

Для конкурентного доступа к таблице используется мультиверсионность. То есть, при одновременном чтении и обновлении таблицы, данные будут читаться из набора кусочков, актуального на момент запроса. Длинных блокировок нет. Вставки никак не мешают чтениям.

Чтения из таблицы автоматически распараллеливаются.

TTL для столбцов и таблиц

Данные с истекшим TTL удаляются во время слияний.

Если TTL указан для столбца, то когда он истекает, значение заменяется на значение по умолчанию. Если все значения столбца обнулены в куске, то данные этого столбца удаляются с диска в куске. Если TTL указан для таблицы, то когда он истекает, удаляется строка.

Когда истекает TTL для какого-нибудь значения или строки в куске, назначается внеочередное слияние. Чтобы контролировать частоту слияний с TTL, вы можете задать настройку merge_with_ttl_timeout. Если ее значение слишком мало, то будет происходить слишком много внеочередных слияний и мало обычных, вследствие чего может ухудшиться производительность.

Оригинальная статья