ClickHouse/dbms/src/AggregateFunctions/AggregateFunctionStatisticsSimple.h

570 lines
19 KiB
C++
Raw Normal View History

#pragma once
#include <cmath>
#include <common/arithmeticOverflow.h>
#include <IO/WriteHelpers.h>
#include <IO/ReadHelpers.h>
#include <AggregateFunctions/IAggregateFunction.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypesDecimal.h>
2017-12-26 19:00:20 +00:00
#include <Columns/ColumnVector.h>
#include <Columns/ColumnDecimal.h>
/** This is simple, not numerically stable
* implementations of variance/covariance/correlation functions.
*
* It is about two times faster than stable variants.
* Numerical errors may occur during summation.
*
* This implementation is selected as default,
* because "you don't pay for what you don't need" principle.
*
* For more sophisticated implementation, look at AggregateFunctionStatistics.h
*/
namespace DB
{
namespace ErrorCodes
{
extern const int DECIMAL_OVERFLOW;
}
/**
Calculating univariate central moments
Levels:
level 2 (pop & samp): var, stddev
level 3: skewness
level 4: kurtosis
References:
https://en.wikipedia.org/wiki/Moment_(mathematics)
https://en.wikipedia.org/wiki/Skewness
https://en.wikipedia.org/wiki/Kurtosis
*/
2019-05-06 03:49:14 +00:00
template <typename T, size_t _level>
struct VarMoments
2019-05-06 03:49:14 +00:00
{
T m[_level + 1]{};
2019-05-06 03:49:14 +00:00
void add(T x)
{
++m[0];
m[1] += x;
m[2] += x * x;
if constexpr (_level >= 3) m[3] += x * x * x;
if constexpr (_level >= 4) m[4] += x * x * x * x;
2019-05-06 03:49:14 +00:00
}
void merge(const VarMoments & rhs)
2019-05-06 03:49:14 +00:00
{
m[0] += rhs.m[0];
m[1] += rhs.m[1];
m[2] += rhs.m[2];
if constexpr (_level >= 3) m[3] += rhs.m[3];
if constexpr (_level >= 4) m[4] += rhs.m[4];
2019-05-06 03:49:14 +00:00
}
void write(WriteBuffer & buf) const
{
writePODBinary(*this, buf);
}
void read(ReadBuffer & buf)
{
readPODBinary(*this, buf);
}
T NO_SANITIZE_UNDEFINED getPopulation() const
{
return (m[2] - m[1] * m[1] / m[0]) / m[0];
2019-05-06 03:49:14 +00:00
}
T NO_SANITIZE_UNDEFINED getSample() const
{
if (m[0] == 0)
2019-05-06 03:49:14 +00:00
return std::numeric_limits<T>::quiet_NaN();
return (m[2] - m[1] * m[1] / m[0]) / (m[0] - 1);
2019-05-06 03:49:14 +00:00
}
T NO_SANITIZE_UNDEFINED getMoment3() const
{
2019-05-06 04:08:54 +00:00
// to avoid accuracy problem
if (m[0] == 1)
2019-05-06 04:08:54 +00:00
return 0;
return (m[3]
- (3 * m[2]
- 2 * m[1] * m[1] / m[0]
) * m[1] / m[0]
) / m[0];
2019-05-06 03:49:14 +00:00
}
T NO_SANITIZE_UNDEFINED getMoment4() const
{
2019-05-06 04:08:54 +00:00
// to avoid accuracy problem
if (m[0] == 1)
2019-05-06 04:08:54 +00:00
return 0;
return (m[4]
- (4 * m[3]
- (6 * m[2]
- 3 * m[1] * m[1] / m[0]
) * m[1] / m[0]
) * m[1] / m[0]
) / m[0];
2019-05-06 03:49:14 +00:00
}
};
template <typename T, size_t _level>
struct VarMomentsDecimal
2019-05-06 03:49:14 +00:00
{
using NativeType = typename T::NativeType;
UInt64 m0{};
NativeType m[_level]{};
NativeType & getM(size_t i)
{
return m[i - 1];
}
const NativeType & getM(size_t i) const
{
return m[i - 1];
}
2019-05-06 03:49:14 +00:00
void add(NativeType x)
{
++m0;
getM(1) += x;
2019-05-06 03:49:14 +00:00
NativeType tmp;
if (common::mulOverflow(x, x, tmp) || common::addOverflow(getM(2), tmp, getM(2)))
2019-05-06 03:49:14 +00:00
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
if constexpr (_level >= 3) if (common::mulOverflow(tmp, x, tmp) || common::addOverflow(getM(3), tmp, getM(3)))
2019-05-06 03:49:14 +00:00
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
if constexpr (_level >= 4) if (common::mulOverflow(tmp, x, tmp) || common::addOverflow(getM(4), tmp, getM(4)))
2019-05-06 03:49:14 +00:00
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
}
void merge(const VarMomentsDecimal & rhs)
2019-05-06 03:49:14 +00:00
{
m0 += rhs.m0;
getM(1) += rhs.getM(1);
2019-05-06 03:49:14 +00:00
if (common::addOverflow(getM(2), rhs.getM(2), getM(2)))
2019-05-06 03:49:14 +00:00
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
if constexpr (_level >= 3) if (common::addOverflow(getM(3), rhs.getM(3), getM(3)))
2019-05-06 03:49:14 +00:00
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
if constexpr (_level >= 4) if (common::addOverflow(getM(4), rhs.getM(4), getM(4)))
2019-05-06 03:49:14 +00:00
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
}
void write(WriteBuffer & buf) const { writePODBinary(*this, buf); }
void read(ReadBuffer & buf) { readPODBinary(*this, buf); }
Float64 getPopulation(UInt32 scale) const
{
if (m0 == 0)
return std::numeric_limits<Float64>::infinity();
NativeType tmp;
if (common::mulOverflow(getM(1), getM(1), tmp) ||
common::subOverflow(getM(2), NativeType(tmp / m0), tmp))
2019-05-06 03:49:14 +00:00
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
return convertFromDecimal<DataTypeDecimal<T>, DataTypeNumber<Float64>>(tmp / m0, scale);
}
Float64 getSample(UInt32 scale) const
{
if (m0 == 0)
return std::numeric_limits<Float64>::quiet_NaN();
if (m0 == 1)
return std::numeric_limits<Float64>::infinity();
NativeType tmp;
if (common::mulOverflow(getM(1), getM(1), tmp) ||
common::subOverflow(getM(2), NativeType(tmp / m0), tmp))
2019-05-06 03:49:14 +00:00
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
return convertFromDecimal<DataTypeDecimal<T>, DataTypeNumber<Float64>>(tmp / (m0 - 1), scale);
}
Float64 getMoment3(UInt32 scale) const
{
if (m0 == 0)
return std::numeric_limits<Float64>::infinity();
NativeType tmp;
if (common::mulOverflow(2 * getM(1), getM(1), tmp) ||
common::subOverflow(3 * getM(2), NativeType(tmp / m0), tmp) ||
common::mulOverflow(tmp, getM(1), tmp) ||
common::subOverflow(getM(3), NativeType(tmp / m0), tmp))
2019-05-06 03:49:14 +00:00
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
return convertFromDecimal<DataTypeDecimal<T>, DataTypeNumber<Float64>>(tmp / m0, scale);
}
Float64 getMoment4(UInt32 scale) const
{
if (m0 == 0)
return std::numeric_limits<Float64>::infinity();
2019-05-06 03:49:14 +00:00
NativeType tmp;
if (common::mulOverflow(3 * getM(1), getM(1), tmp) ||
common::subOverflow(6 * getM(2), NativeType(tmp / m0), tmp) ||
common::mulOverflow(tmp, getM(1), tmp) ||
common::subOverflow(4 * getM(3), NativeType(tmp / m0), tmp) ||
common::mulOverflow(tmp, getM(1), tmp) ||
common::subOverflow(getM(4), NativeType(tmp / m0), tmp))
2019-05-06 03:49:14 +00:00
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
return convertFromDecimal<DataTypeDecimal<T>, DataTypeNumber<Float64>>(tmp / m0, scale);
}
};
/**
Calculating multivariate central moments
Levels:
level 2 (pop & samp): covar
References:
https://en.wikipedia.org/wiki/Moment_(mathematics)
*/
template <typename T>
struct CovarMoments
{
T m0{};
T x1{};
T y1{};
T xy{};
void add(T x, T y)
{
++m0;
x1 += x;
y1 += y;
xy += x * y;
}
void merge(const CovarMoments & rhs)
{
m0 += rhs.m0;
x1 += rhs.x1;
y1 += rhs.y1;
xy += rhs.xy;
}
void write(WriteBuffer & buf) const
{
writePODBinary(*this, buf);
}
void read(ReadBuffer & buf)
{
readPODBinary(*this, buf);
}
2018-12-27 01:03:16 +00:00
T NO_SANITIZE_UNDEFINED getPopulation() const
{
return (xy - x1 * y1 / m0) / m0;
}
2018-12-27 01:03:16 +00:00
T NO_SANITIZE_UNDEFINED getSample() const
{
if (m0 == 0)
return std::numeric_limits<T>::quiet_NaN();
return (xy - x1 * y1 / m0) / (m0 - 1);
}
};
template <typename T>
struct CorrMoments
{
T m0{};
T x1{};
T y1{};
T xy{};
T x2{};
T y2{};
void add(T x, T y)
{
++m0;
x1 += x;
y1 += y;
xy += x * y;
x2 += x * x;
y2 += y * y;
}
void merge(const CorrMoments & rhs)
{
m0 += rhs.m0;
x1 += rhs.x1;
y1 += rhs.y1;
xy += rhs.xy;
x2 += rhs.x2;
y2 += rhs.y2;
}
void write(WriteBuffer & buf) const
{
writePODBinary(*this, buf);
}
void read(ReadBuffer & buf)
{
readPODBinary(*this, buf);
}
2018-12-27 01:03:16 +00:00
T NO_SANITIZE_UNDEFINED get() const
{
return (m0 * xy - x1 * y1) / sqrt((m0 * x2 - x1 * x1) * (m0 * y2 - y1 * y1));
}
};
enum class StatisticsFunctionKind
{
varPop, varSamp,
stddevPop, stddevSamp,
2019-05-06 03:49:14 +00:00
skewPop, skewSamp,
kurtPop, kurtSamp,
covarPop, covarSamp,
corr
};
2019-05-06 03:49:14 +00:00
template <typename T, StatisticsFunctionKind _kind, size_t _level>
struct StatFuncOneArg
{
using Type1 = T;
using Type2 = T;
using ResultType = std::conditional_t<std::is_same_v<T, Float32>, Float32, Float64>;
using Data = std::conditional_t<IsDecimalNumber<T>, VarMomentsDecimal<Decimal128, _level>, VarMoments<ResultType, _level>>;
static constexpr StatisticsFunctionKind kind = _kind;
static constexpr UInt32 num_args = 1;
};
template <typename T1, typename T2, StatisticsFunctionKind _kind>
struct StatFuncTwoArg
{
using Type1 = T1;
using Type2 = T2;
using ResultType = std::conditional_t<std::is_same_v<T1, T2> && std::is_same_v<T1, Float32>, Float32, Float64>;
using Data = std::conditional_t<_kind == StatisticsFunctionKind::corr, CorrMoments<ResultType>, CovarMoments<ResultType>>;
static constexpr StatisticsFunctionKind kind = _kind;
static constexpr UInt32 num_args = 2;
};
template <typename StatFunc>
class AggregateFunctionVarianceSimple final
: public IAggregateFunctionDataHelper<typename StatFunc::Data, AggregateFunctionVarianceSimple<StatFunc>>
{
public:
using T1 = typename StatFunc::Type1;
using T2 = typename StatFunc::Type2;
using ColVecT1 = std::conditional_t<IsDecimalNumber<T1>, ColumnDecimal<T1>, ColumnVector<T1>>;
using ColVecT2 = std::conditional_t<IsDecimalNumber<T2>, ColumnDecimal<T2>, ColumnVector<T2>>;
using ResultType = typename StatFunc::ResultType;
using ColVecResult = ColumnVector<ResultType>;
AggregateFunctionVarianceSimple(const DataTypes & argument_types_)
: IAggregateFunctionDataHelper<typename StatFunc::Data, AggregateFunctionVarianceSimple<StatFunc>>(argument_types_, {})
2019-02-11 19:26:32 +00:00
, src_scale(0)
{}
AggregateFunctionVarianceSimple(const IDataType & data_type, const DataTypes & argument_types_)
: IAggregateFunctionDataHelper<typename StatFunc::Data, AggregateFunctionVarianceSimple<StatFunc>>(argument_types_, {})
2019-02-11 19:26:32 +00:00
, src_scale(getDecimalScale(data_type))
{}
String getName() const override
{
2019-05-06 03:49:14 +00:00
if constexpr (StatFunc::kind == StatisticsFunctionKind::varPop)
return "varPop";
if constexpr (StatFunc::kind == StatisticsFunctionKind::varSamp)
return "varSamp";
if constexpr (StatFunc::kind == StatisticsFunctionKind::stddevPop)
return "stddevPop";
if constexpr (StatFunc::kind == StatisticsFunctionKind::stddevSamp)
return "stddevSamp";
if constexpr (StatFunc::kind == StatisticsFunctionKind::skewPop)
return "skewPop";
if constexpr (StatFunc::kind == StatisticsFunctionKind::skewSamp)
return "skewSamp";
if constexpr (StatFunc::kind == StatisticsFunctionKind::kurtPop)
return "kurtPop";
if constexpr (StatFunc::kind == StatisticsFunctionKind::kurtSamp)
return "kurtSamp";
if constexpr (StatFunc::kind == StatisticsFunctionKind::covarPop)
return "covarPop";
if constexpr (StatFunc::kind == StatisticsFunctionKind::covarSamp)
return "covarSamp";
if constexpr (StatFunc::kind == StatisticsFunctionKind::corr)
return "corr";
}
DataTypePtr getReturnType() const override
{
return std::make_shared<DataTypeNumber<ResultType>>();
}
void add(AggregateDataPtr place, const IColumn ** columns, size_t row_num, Arena *) const override
{
if constexpr (StatFunc::num_args == 2)
this->data(place).add(
static_cast<const ColVecT1 &>(*columns[0]).getData()[row_num],
static_cast<const ColVecT2 &>(*columns[1]).getData()[row_num]);
else
this->data(place).add(
static_cast<const ColVecT1 &>(*columns[0]).getData()[row_num]);
}
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs, Arena *) const override
{
this->data(place).merge(this->data(rhs));
}
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
{
this->data(place).write(buf);
}
void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena *) const override
{
this->data(place).read(buf);
}
void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override
{
const auto & data = this->data(place);
auto & dst = static_cast<ColVecResult &>(to).getData();
if constexpr (IsDecimalNumber<T1>)
{
2019-05-06 03:49:14 +00:00
if constexpr (StatFunc::kind == StatisticsFunctionKind::varPop)
dst.push_back(data.getPopulation(src_scale * 2));
if constexpr (StatFunc::kind == StatisticsFunctionKind::varSamp)
dst.push_back(data.getSample(src_scale * 2));
if constexpr (StatFunc::kind == StatisticsFunctionKind::stddevPop)
dst.push_back(sqrt(data.getPopulation(src_scale * 2)));
if constexpr (StatFunc::kind == StatisticsFunctionKind::stddevSamp)
dst.push_back(sqrt(data.getSample(src_scale * 2)));
if constexpr (StatFunc::kind == StatisticsFunctionKind::skewPop)
2019-05-21 08:10:49 +00:00
{
Float64 var_value = data.getPopulation(src_scale * 2);
if (var_value > 0)
dst.push_back(data.getMoment3(src_scale * 3) / pow(var_value, 1.5));
else
dst.push_back(std::numeric_limits<Float64>::quiet_NaN());
}
2019-05-06 03:49:14 +00:00
if constexpr (StatFunc::kind == StatisticsFunctionKind::skewSamp)
2019-05-21 08:10:49 +00:00
{
Float64 var_value = data.getSample(src_scale * 2);
if (var_value > 0)
dst.push_back(data.getMoment3(src_scale * 3) / pow(var_value, 1.5));
else
dst.push_back(std::numeric_limits<Float64>::quiet_NaN());
}
2019-05-06 03:49:14 +00:00
if constexpr (StatFunc::kind == StatisticsFunctionKind::kurtPop)
2019-05-21 08:10:49 +00:00
{
Float64 var_value = data.getPopulation(src_scale * 2);
if (var_value > 0)
dst.push_back(data.getMoment4(src_scale * 4) / pow(var_value, 2));
else
dst.push_back(std::numeric_limits<Float64>::quiet_NaN());
}
2019-05-06 03:49:14 +00:00
if constexpr (StatFunc::kind == StatisticsFunctionKind::kurtSamp)
2019-05-21 08:10:49 +00:00
{
Float64 var_value = data.getSample(src_scale * 2);
if (var_value > 0)
dst.push_back(data.getMoment4(src_scale * 4) / pow(var_value, 2));
else
dst.push_back(std::numeric_limits<Float64>::quiet_NaN());
}
}
else
{
2019-05-06 03:49:14 +00:00
if constexpr (StatFunc::kind == StatisticsFunctionKind::varPop)
dst.push_back(data.getPopulation());
if constexpr (StatFunc::kind == StatisticsFunctionKind::varSamp)
dst.push_back(data.getSample());
if constexpr (StatFunc::kind == StatisticsFunctionKind::stddevPop)
dst.push_back(sqrt(data.getPopulation()));
if constexpr (StatFunc::kind == StatisticsFunctionKind::stddevSamp)
dst.push_back(sqrt(data.getSample()));
if constexpr (StatFunc::kind == StatisticsFunctionKind::skewPop)
2019-05-21 08:10:49 +00:00
{
ResultType var_value = data.getPopulation();
if (var_value > 0)
dst.push_back(data.getMoment3() / pow(var_value, 1.5));
else
dst.push_back(std::numeric_limits<ResultType>::quiet_NaN());
}
2019-05-06 03:49:14 +00:00
if constexpr (StatFunc::kind == StatisticsFunctionKind::skewSamp)
2019-05-21 08:10:49 +00:00
{
ResultType var_value = data.getSample();
if (var_value > 0)
dst.push_back(data.getMoment3() / pow(var_value, 1.5));
else
dst.push_back(std::numeric_limits<ResultType>::quiet_NaN());
}
2019-05-06 03:49:14 +00:00
if constexpr (StatFunc::kind == StatisticsFunctionKind::kurtPop)
2019-05-21 08:10:49 +00:00
{
ResultType var_value = data.getPopulation();
if (var_value > 0)
dst.push_back(data.getMoment4() / pow(var_value, 2));
else
dst.push_back(std::numeric_limits<ResultType>::quiet_NaN());
}
2019-05-06 03:49:14 +00:00
if constexpr (StatFunc::kind == StatisticsFunctionKind::kurtSamp)
2019-05-21 08:10:49 +00:00
{
ResultType var_value = data.getSample();
if (var_value > 0)
dst.push_back(data.getMoment4() / pow(var_value, 2));
else
dst.push_back(std::numeric_limits<ResultType>::quiet_NaN());
}
2019-05-06 03:49:14 +00:00
if constexpr (StatFunc::kind == StatisticsFunctionKind::covarPop)
dst.push_back(data.getPopulation());
if constexpr (StatFunc::kind == StatisticsFunctionKind::covarSamp)
dst.push_back(data.getSample());
if constexpr (StatFunc::kind == StatisticsFunctionKind::corr)
dst.push_back(data.get());
}
}
const char * getHeaderFilePath() const override { return __FILE__; }
private:
UInt32 src_scale;
};
2019-05-06 03:49:14 +00:00
template <typename T> using AggregateFunctionVarPopSimple = AggregateFunctionVarianceSimple<StatFuncOneArg<T, StatisticsFunctionKind::varPop, 2>>;
template <typename T> using AggregateFunctionVarSampSimple = AggregateFunctionVarianceSimple<StatFuncOneArg<T, StatisticsFunctionKind::varSamp, 2>>;
template <typename T> using AggregateFunctionStddevPopSimple = AggregateFunctionVarianceSimple<StatFuncOneArg<T, StatisticsFunctionKind::stddevPop, 2>>;
template <typename T> using AggregateFunctionStddevSampSimple = AggregateFunctionVarianceSimple<StatFuncOneArg<T, StatisticsFunctionKind::stddevSamp, 2>>;
template <typename T> using AggregateFunctionSkewPopSimple = AggregateFunctionVarianceSimple<StatFuncOneArg<T, StatisticsFunctionKind::skewPop, 3>>;
template <typename T> using AggregateFunctionSkewSampSimple = AggregateFunctionVarianceSimple<StatFuncOneArg<T, StatisticsFunctionKind::skewSamp, 3>>;
template <typename T> using AggregateFunctionKurtPopSimple = AggregateFunctionVarianceSimple<StatFuncOneArg<T, StatisticsFunctionKind::kurtPop, 4>>;
template <typename T> using AggregateFunctionKurtSampSimple = AggregateFunctionVarianceSimple<StatFuncOneArg<T, StatisticsFunctionKind::kurtSamp, 4>>;
template <typename T1, typename T2> using AggregateFunctionCovarPopSimple = AggregateFunctionVarianceSimple<StatFuncTwoArg<T1, T2, StatisticsFunctionKind::covarPop>>;
template <typename T1, typename T2> using AggregateFunctionCovarSampSimple = AggregateFunctionVarianceSimple<StatFuncTwoArg<T1, T2, StatisticsFunctionKind::covarSamp>>;
template <typename T1, typename T2> using AggregateFunctionCorrSimple = AggregateFunctionVarianceSimple<StatFuncTwoArg<T1, T2, StatisticsFunctionKind::corr>>;
}